Some Problems of Statistical Modeling of Intermittent Turbulent Flows and Their Solutions

Author(s):  
Yu. V. Nuzhnov

Some problems of statistical modeling of turbulent flows associated with the hydrodynamic effects of intermittency of various dynamic and scalar fields are identified, and a justification of their solutions is proposed. At first examines some problems of statistical modeling of large-scale (energy-containing) turbulence structure under the conditions of turbulent and nonturbulent fluid intermittency in the turbulent flow. This primarily applies to the problem of obtaining the differential equations of hydrodynamics for conditional statistical moments (conditional averages), i.e. for single-point statistical moments of each of the intermittent media of turbulent flow. To solve this problem is given a mathematically rigorous justification of conducting the operation of conditional averaging of the Navier-Stokes equations. As a result was obtained the system of differential equations for the conditional averages of turbulent and nonturbulent fluid. The main advantage of the obtained differential equations for the conditional averages is that these equations don’t contain the source terms. Therewith is given a physical substantiation of transformation process of nonturbulent fluid in turbulent, that occurs in a thin superlayer, which separates turbulent and nonturbulent fluid. Here also is given a justification of conducting the operation of total averaging of the partial derivates, which, as it turns out, is not a permutational and leads to a number of specific features in comparison with the unconditional averaging in RANS. Another problem associated with statistical modeling of inhomogeneous turbulent flows, i.e. flows with an inhomogeneous field of scalar substance. It is known that the dynamic field with turbulent fluid does not coincide with the inhomogeneous field of scalar substance. To solve this problem is proposed a method of calculating the statistical characteristics both of the turbulent fluid and the inhomogeneous field of a passive admixture concentration. It is shown, that the conditional averages of the passive admixture concentration are significantly different. In conclusion we consider the problem of statistical modeling of diffusional turbulent combustion of not pre-mixed chemically reacting gases, expressly the modeling by the known method PDF with involving the “reduced fuel concentration” as the passive impurity concentration. To solve this problem is given a justification of new differential equations, allowing to carry out calculations only of the conditional averages for the intersection region of the dynamic field of the turbulent fluid and the inhomogeneous field of the passive impurity concentration. Some results of such calculations, performed in the self-similar field of diffusion turbulent propane plume, are presented together with the experimental data available in literature.

Author(s):  
Yu. V. Nuzhnov

The statistical modeling of fluctuating kinetic energy in turbulent and non-turbulent fluid of a turbulent flow are presented and self-similar solutions applied to budget equations of conditionally averaged fluctuating kinetic energy are obtained. The equations were constructed on basis of the method of autonomous statistical modeling of turbulent flows (ASMTurb method) and allow to calculate the conditional averages both fluctuating kinetic energy and terms of the budget equations. The total statistical averages are found with help algebraic ratios between total and conditional averages through the agency of external intermittency factor. Testing the ASMTurb method is presented in the form of ASMTurb model for self-similar region of the two-stream plane mixing layer. Test results showed that the constructed here ASMTurb model is deeper and more accurate than RANS model. A comparison is performed between predictions and known experimental data for energy-containing fluctuating structure of the turbulent flow in mixing layer and excellent agreements are noted.


2021 ◽  
Vol 2096 (1) ◽  
pp. 012102
Author(s):  
V Sokolov ◽  
O Krol

Abstract The work is devoted to the experimental study of the process of impurities diffusion in the circular cylindrical channel and the determination of the coordinates of the average concentration of impurities in the turbulent flow. To ensure the uniformity for the aerosols composition during the studies, the experiments were carried out with solid particles of narrow fractional composition. The use of fine-grained oxide catalyst made it possible to obtain the almost monodisperse material. The experimental installation included the volumetric doser for impurity material, the ejector, the concentration sensor, the section of the vertical pipeline, and manometers for recording the pressure in the system. It is shown that the theoretical and experimental results are in satisfactory agreement with each other, and the existing discrepancy can be explained both by the measurement error and by the presence of spiral motion for the solid phase in the ascending flow. Based on the experiments, it was concluded that the known mathematical positions are adequate and internally not contradictory models of the diffusion process of the impurity substance in the turbulent flow, which can be used to analyze the distribution of the impurity concentration in the channels of the ventilation systems. The results of the studies performed should be taken into account when developing systems for measuring and monitoring the gas-air emissions characteristics of the ventilation systems of industrial enterprises.


This book provides students and researchers in fluid engineering with an up-to-date overview of turbulent flow research in the areas of simulation and modeling. A key element of the book is the systematic, rational development of turbulence closure models and related aspects of modern turbulent flow theory and prediction. Starting with a review of the spectral dynamics of homogenous and inhomogeneous turbulent flows, succeeding chapters deal with numerical simulation techniques, renormalization group methods and turbulent closure modeling. Each chapter is authored by recognized leaders in their respective fields, and each provides a thorough and cohesive treatment of the subject.


2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Rui Zhang ◽  
Chengwen Zhong ◽  
Sha Liu ◽  
Congshan Zhuo

AbstractIn this paper, we introduce the discrete Maxwellian equilibrium distribution function for incompressible flow and force term into the two-stage third-order Discrete Unified Gas-Kinetic Scheme (DUGKS) for simulating low-speed turbulent flows. The Wall-Adapting Local Eddy-viscosity (WALE) and Vreman sub-grid models for Large-Eddy Simulations (LES) of turbulent flows are coupled within the present framework. Meanwhile, the implicit LES are also presented to verify the effect of LES models. A parallel implementation strategy for the present framework is developed, and three canonical wall-bounded turbulent flow cases are investigated, including the fully developed turbulent channel flow at a friction Reynolds number (Re) about 180, the turbulent plane Couette flow at a friction Re number about 93 and lid-driven cubical cavity flow at a Re number of 12000. The turbulence statistics, including mean velocity, the r.m.s. fluctuations velocity, Reynolds stress, etc. are computed by the present approach. Their predictions match precisely with each other, and they are both in reasonable agreement with the benchmark data of DNS. Especially, the predicted flow physics of three-dimensional lid-driven cavity flow are consistent with the description from abundant literature. The present numerical results verify that the present two-stage third-order DUGKS-based LES method is capable for simulating inhomogeneous wall-bounded turbulent flows and getting reliable results with relatively coarse grids.


Author(s):  
Yan Jin

Abstract The turbulent flow in a compressor cascade is calculated by using a new simulation method, i.e., parameter extension simulation (PES). It is defined as the calculation of a turbulent flow with the help of a reference solution. A special large-eddy simulation (LES) method is developed to calculate the reference solution for PES. Then, the reference solution is extended to approximate the exact solution for the Navier-Stokes equations. The Richardson extrapolation is used to estimate the model error. The compressor cascade is made of NACA0065-009 airfoils. The Reynolds number 3.82 × 105 and the attack angles −2° to 7° are accounted for in the study. The effects of the end-walls, attack angle, and tripping bands on the flow are analyzed. The PES results are compared with the experimental data as well as the LES results using the Smagorinsky, k-equation and WALE subgrid models. The numerical results show that the PES requires a lower mesh resolution than the other LES methods. The details of the flow field including the laminar-turbulence transition can be directly captured from the PES results without introducing any additional model. These characteristics make the PES a potential method for simulating flows in turbomachinery with high Reynolds numbers.


2021 ◽  
Author(s):  
Christina Tsai ◽  
Kuang-Ting Wu

<p>It is demonstrated that turbulent boundary layers are populated by a hierarchy of recurrent structures, normally referred to as the coherent structures. Thus, it is desirable to gain a better understanding of the spatial-temporal characteristics of coherent structures and their impact on fluid particles. Furthermore, the ejection and sweep events play an important role in turbulent statistics. Therefore, this study focuses on the characterizations of flow particles under the influence of the above-mentioned two structures.</p><div><span>With regard to the geometry of turbulent structures, </span><span>Meinhart & Adrian (1995) </span>first highlighted the existence of large and irregularly shaped regions of uniform streamwise momentum zone (hereafter referred to as a uniform momentum zone, or UMZs), regions of relatively similar streamwise velocity with coherence in the streamwise and wall-normal directions.  <span>Subsequently, </span><span>de Silva et al. (2017) </span><span>provided a detection criterion that had previously been utilized to locate the uniform momentum zones (UMZ) and demonstrated the application of this criterion to estimate the spatial locations of the edges that demarcates UMZs.</span></div><div> </div><div>In this study, detection of the existence of UMZs is a pre-process of identifying the coherent structures. After the edges of UMZs are determined, the identification procedure of ejection and sweep events from turbulent flow DNS data should be defined. As such, an integrated criterion of distinguishing ejection and sweep events is proposed. Based on the integrated criterion, the statistical characterizations of coherent structures from available turbulent flow data such as event durations, event maximum heights, and wall-normal and streamwise lengths can be presented.</div>


2009 ◽  
Vol 630 ◽  
pp. 1-4 ◽  
Author(s):  
IVAN MARUSIC

Turbulent flows near walls have been the focus of intense study since their first description by Ludwig Prandtl over 100 years ago. They are critical in determining the drag and lift of an aircraft wing for example. Key challenges are to understand the physical mechanisms causing the transition from smooth, laminar flow to turbulent flow and how the turbulence is then maintained. Recent direct numerical simulations have contributed significantly towards this understanding.


Volume 1 ◽  
2004 ◽  
Author(s):  
M. H. Saidi ◽  
A. A. Mozafari ◽  
L. Sharifian

Cell temperature in fuel cells is an important parameter which highly affects fuel cell stack efficiency. A suitable cooling system should satisfy an acceptable temperature range. In this research a relevant cooling system for a specified PEM fuel cell stack has been proposed complying with the criteria and cooling requirements of the fuel cell. The effect of various parameters on the entropy generation and temperature distribution in the cooling plates are surveyed. The number of cooling plates, the number of channels in each cooling plate and the channel width is determined. Two flow regimes namely laminar and turbulent flows of the cooling fluid in channels are analyzed and a design methodology is proposed for each regime of flow. The proposed design methodology in turbulent flow will be optimized while the work destruction is minimized. However, the proposed design in laminar flow is not the optimum one but the most efficient between different configurations. The comparison between these two proposed designs show that the turbulent flow has a lower entropy generation. In addition to entropy generation minimization, to have a desirable optimum cooling system, other parameters such as the size of the cooling plates and temperature uniformity inside cooling system have been investigated in this analysis.


Sign in / Sign up

Export Citation Format

Share Document