inhomogeneous field
Recently Published Documents


TOTAL DOCUMENTS

161
(FIVE YEARS 27)

H-INDEX

22
(FIVE YEARS 2)

2021 ◽  
Vol 922 (1) ◽  
pp. 48
Author(s):  
H. Saleem ◽  
Shaukat Ali Shan ◽  
A. Rehman

Abstract Theoretical models are presented to show that expansion of plasma in the radial direction from a denser solar surface to a rarefied upper atmosphere with short-scale inhomogeneous field-aligned flows and currents in the form of thin threads itself is an important source of electrostatic instabilities. Multifluid theory shows that the shear flow–driven purely growing electric fields appear in the transition region. On the other hand, plasma kinetic theory predicts that the short-scale current sheets (or filaments) produce current-driven electrostatic ion acoustic (CDEIA) waves in the hydrogen plasma of the transition region that damp out in the system through wave–particle interactions and increase the temperature. Similar processes take place in the solar corona and act positively for increasing the temperature further and maintaining it. The shear flow–driven instabilities and CDEIA waves have short perpendicular wavelengths of the order of 1 m and low frequencies of the order of 1 or several Hz when the ions’ shear flow scale length is considered to be of the order of 1 km. It is pointed out that the purely growing fluid instabilities turn into oscillatory instabilities and the growth rates of kinetic CDEIA wave instabilities are reduced when the dynamics of 10% helium ions is taken into account along with 90% hydrogen ions. Therefore, the role of helium ions should not be ignored in the study of wave dynamics in solar plasma.


2021 ◽  
Vol 2094 (2) ◽  
pp. 022029
Author(s):  
V M Somsikov ◽  
A M Abylay ◽  
D B Kuvatova

Abstract The article considers the question of the possibility of constructing classical mechanics and empirical branches of physics, such as thermodynamics, statistical physics and kinetics on a general theoretical basis. The principles of constructing mechanics, thermodynamics, statistical physics, and kinetics are briefly given. It is shown how the construction of the above sections of physics on a unified basis became possible, relying on the mechanics of a structured body. The essence of this mechanics is that, unlike Newton’s mechanics, built for a body model in the form of a material point, this mechanics is built based on a body model in the form of a structured body. Moreover, the structured body is specified in the form of an equilibrium system of potentially interacting material points. It is shown how the equation of motion of a structured body is derived. The peculiarity of this equation is that it takes into account the transformation of the energy of motion of a structured body into internal energy when it moves in an inhomogeneous field of forces. This makes it possible to describe dissipative processes within the framework of the mechanics of a structured body without invoking statistical laws. Examples are given of how the empirical principles of the phenomenological branches of physics directly follow from the fundamental laws of physics.


2021 ◽  
Vol 104 (4) ◽  
Author(s):  
Yongkun Chen ◽  
Yueming Zhou ◽  
Jia Tan ◽  
Min Li ◽  
Wei Cao ◽  
...  

Entropy ◽  
2021 ◽  
Vol 23 (8) ◽  
pp. 1066
Author(s):  
Gehad Sadiek ◽  
Samaher Almalki

Recently new novel magnetic phases were shown to exist in the asymptotic steady states of spin systems coupled to dissipative environments at zero temperature. Tuning the different system parameters led to quantum phase transitions among those states. We study, here, a finite two-dimensional Heisenberg triangular spin lattice coupled to a dissipative Markovian Lindblad environment at finite temperature. We show how applying an inhomogeneous magnetic field to the system at different degrees of anisotropy may significantly affect the spin states, and the entanglement properties and distribution among the spins in the asymptotic steady state of the system. In particular, applying an inhomogeneous field with an inward (growing) gradient toward the central spin is found to considerably enhance the nearest neighbor entanglement and its robustness against the thermal dissipative decay effect in the completely anisotropic (Ising) system, whereas the beyond nearest neighbor ones vanish entirely. The spins of the system in this case reach different steady states depending on their positions in the lattice. However, the inhomogeneity of the field shows no effect on the entanglement in the completely isotropic (XXX) system, which vanishes asymptotically under any system configuration and the spins relax to a separable (disentangled) steady state with all the spins reaching a common spin state. Interestingly, applying the same field to a partially anisotropic (XYZ) system does not just enhance the nearest neighbor entanglements and their thermal robustness but all the long-range ones as well, while the spins relax asymptotically to very distinguished spin states, which is a sign of a critical behavior taking place at this combination of system anisotropy and field inhomogeneity.


Author(s):  
Oleksii G. Lebid

Distributed systems are widely used in practice. These are cosmic ligaments in the near-Earth space with a length of tens of kilometers. They approximate reinforced concrete piles in the soil when calculating the stress-strain state and assessing the technical condition; pipelines both in air and in liquid, underwater towed systems. Known underwater airlift systems of great length for the extraction of minerals (nodules) from the ocean floor with a length of 5-10 km. To solve the problems of the dynamics of such systems in various environments, the well-known mathematical models are not quite correct from the point of view of taking into account the variety of wave processes. It determines the need to build refined wave models. A new quasilinear mathematical model, which describes the nonlinear four-mode dynamics of the distributed system in the spatially inhomogeneous field of mass and surface forces, has been obtained. It is described by a nonlinear system of twelve first-order partial differential equations. For it, the principles of ultimate and hyperbolicity are fulfilled. Together with the boundary and initial conditions, it can be used to describe dynamics and statics of geometrically and physically nonlinear rod elements, piles in the ground, crane equipment ropes, mine lifts, aerial cableways, towed systems in liquid and gas flow, etc. For two-mode spatial reduction of the model, the theorem about correctness of Cauchy problem has been considered. As a result of the calculations, the earlier assumptions about the movement of the cable along its initial configuration were changed as the length of the cable changed. It has been found out that this assumption is only true for the initial transition participant. It is also established that at a given tachogram in the configuration of the towed line, there is a point of inflection, which shifts from top to bottom when lifting it. It can be a factor in the looping, contributing to the breakage of the cable system during towing.


Micromachines ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 738
Author(s):  
Jan Gimsa

A new expression for the dielectrophoresis (DEP) force is derived from the electrical work in a charge-cycle model that allows the field-free transition of a single object between the centers of two adjacent cubic volumes in an inhomogeneous field. The charging work for the capacities of the volumes is calculated in the absence and in the presence of the object using the external permittivity and Maxwell-Wagner’s mixing equation, respectively. The model provides additional terms for the Clausius-Mossotti factor, which vanish for the mathematical boundary transition toward zero volume fraction, but which can be interesting for narrow microfluidic systems. The comparison with the classical solution provides a new perspective on the notorious problem of electrostatic modeling of AC electrokinetic effects in lossy media and gives insight into the relationships between active, reactive, and apparent power in DEP force generation. DEP moves more highly polarizable media to locations with a higher field, making a DEP-related increase in the overall polarizability of suspensions intuitive. Calculations of the passage of single objects through a chain of cubic volumes show increased overall effective polarizability in the system for both positive and negative DEP. Therefore, it is proposed that DEP be considered a conditioned polarization mechanism, even if it is slow with respect to the field oscillation. The DEP-induced changes in permittivity and conductivity describe the increase in the overall energy dissipation in the DEP systems consistent with the law of maximum entropy production. Thermodynamics can help explain DEP accumulation of small objects below the limits of Brownian motion.


2021 ◽  
pp. 1-12
Author(s):  
Gangtai Zhang ◽  
Ziqi Wang ◽  
Tingting Bai ◽  
Rui Gao ◽  
Shangbin Jiao ◽  
...  

Author(s):  
Igor Meglinski ◽  
Liliya Trifonyuk ◽  
Victor Bachinsky ◽  
Oleh Vanchulyak ◽  
Boris Bodnar ◽  
...  

2021 ◽  
pp. 1-12
Author(s):  
Boris Grigorievich Freinkman ◽  
Sergey Vladimirovich Polyakov ◽  
Ilya Olegovich Tolstov

This study is related to the development of mathematical methods and numerical algorithms for modeling the local quantum state of the graphene surface on the scale of the lattice spacing. Earlier, to solve this problem, a model of the graphene structure in the form of a lattice of hydrogen-like atoms with screened ions was proposed. However, the screening field was uniform. In this work, it is assumed that the screening field of the ion is inhomogeneous along the radius. The main direction of research was the calculation of the energy of the ground state of an electron in an inhomogeneous field.


Sign in / Sign up

Export Citation Format

Share Document