Application of a Hybrid RANS-LES CFD Methodology to Primary Atomization in a Coaxial Injector

Author(s):  
Wayne Strasser ◽  
Francine Battaglia ◽  
Keith Walters

Non-zonal hybrid RANS-LES models, i.e. those which do not rely on user-prescribed zones for activating RANS or LES, have shown promise in accurately resolving the energy-containing and highly anisotropic large-scale motions in complex separated flows. In particular, the recently proposed dynamic hybrid RANS-LES (DHRL) approach, a method which relies on the continuity of turbulence production through the RANS-to-LES transition zone, has been validated for several different compressible and incompressible single phase flow problems and has been found to be accurate and relatively insensitive to mesh resolution. Time-averaged source terms are used to augment the momentum balance. An added benefit of the DHRL is the ability to directly couple any combination of RANS and LES models into a hybrid model without any change to numerical treatment of the transition region. In this study, an attempt is made to extend the application of this model to multiphase flows using two open literature coaxial two-stream injectors involving non-Newtonian liquids. For the first time, the new model has been successfully implemented in a multiphase framework, combining the SST RANS model with MILES LES approach. Favre averaging is used to ensure consistency between the momentum equations and the density fluctuations. It was found that the momentum source terms must be density weighted in order to ensure stability of the solution. Primary atomization findings with a stable model are encouraging. The spray character with the new model was somewhere between that of a RANS model and the LES result. Droplet sizes, which are indicative of the shear layer energy, for the RANS model were greater than the hybrid results, which were comparable to the LES result and matched the experimental expectation. Additionally, the new approach showed a liquid core breakup length close to that expected from the literature.

2018 ◽  
Vol 36 (4) ◽  
pp. 1099-1116
Author(s):  
Gerald A. Lehmacher ◽  
Miguel F. Larsen ◽  
Richard L. Collins ◽  
Aroh Barjatya ◽  
Boris Strelnikov

Abstract. Four mesosphere–lower thermosphere temperature and turbulence profiles were obtained in situ within ∼30 min and over an area of about 100 by 100 km during a sounding rocket experiment conducted on 26 January 2015 at Poker Flat Research Range in Alaska. In this paper we examine the spatial and temporal variability of mesospheric turbulence in relationship to the static stability of the background atmosphere. Using active payload attitude control, neutral density fluctuations, a tracer for turbulence, were observed with very little interference from the payload spin motion, and with high precision (<0.01 %) at sub-meter resolution. The large-scale vertical temperature structure was very consistent between the four soundings. The mesosphere was almost isothermal, which means more stratified, between 60 and 80 km, and again between 88 and 95 km. The stratified regions adjoined quasi-adiabatic regions assumed to be well mixed. Additional evidence of vertical transport and convective activity comes from sodium densities and trimethyl aluminum trail development, respectively, which were both observed simultaneously with the in situ measurements. We found considerable kilometer-scale temperature variability with amplitudes of 20 K in the stratified region below 80 km. Several thin turbulent layers were embedded in this region, differing in width and altitude for each profile. Energy dissipation rates varied between 0.1 and 10 mW kg−1, which is typical for the winter mesosphere. Very little turbulence was observed above 82 km, consistent with very weak small-scale gravity wave activity in the upper mesosphere during the launch night. On the other hand, above the cold and prominent mesopause at 102 km, large temperature excursions of +40 to +70 K were observed. Simultaneous wind measurements revealed extreme wind shears near 108 km, and combined with the observed temperature gradient, isolated regions of unstable Richardson numbers (0<Ri<0.25) were detected in the lower thermosphere. The experiment was launched into a bright auroral arc under moderately disturbed conditions (Kp∼5).


2018 ◽  
Vol 611 ◽  
pp. A89 ◽  
Author(s):  
Yueh-Ning Lee ◽  
Patrick Hennebelle

Context. Understanding the origin of the initial mass function (IMF) of stars is a major problem for the star formation process and beyond. Aim. We investigate the dependence of the peak of the IMF on the physics of the so-called first Larson core, which corresponds to the point where the dust becomes opaque to its own radiation. Methods. We performed numerical simulations of collapsing clouds of 1000 M⊙ for various gas equations of state (eos), paying great attention to the numerical resolution and convergence. The initial conditions of these numerical experiments are varied in the companion paper. We also develop analytical models that we compare to our numerical results. Results. When an isothermal eos is used, we show that the peak of the IMF shifts to lower masses with improved numerical resolution. When an adiabatic eos is employed, numerical convergence is obtained. The peak position varies with the eos, and using an analytical model to infer the mass of the first Larson core, we find that the peak position is about ten times its value. By analyzing the stability of nonlinear density fluctuations in the vicinity of a point mass and then summing over a reasonable density distribution, we find that tidal forces exert a strong stabilizing effect and likely lead to a preferential mass several times higher than that of the first Larson core. Conclusions. We propose that in a sufficiently massive and cold cloud, the peak of the IMF is determined by the thermodynamics of the high-density adiabatic gas as well as the stabilizing influence of tidal forces. The resulting characteristic mass is about ten times the mass of the first Larson core, which altogether leads to a few tenths of solar masses. Since these processes are not related to the large-scale physical conditions and to the environment, our results suggest a possible explanation for the apparent universality of the peak of the IMF.


Radiocarbon ◽  
1986 ◽  
Vol 28 (2A) ◽  
pp. 391-396 ◽  
Author(s):  
Reiner Schlitzer

The renewal of east Atlantic deep water and its large-scale circulation and mixing have been studied in observed distributions of temperature, silicate, ΣCO2, and 14C. 14C variations in northeast Atlantic deep water below 3500m depth are small. Δ14C values range from − 100‰ to −125‰. 14C bottom water concentrations decrease from Δ14C =−117‰ in the Sierra Leone Basin to Δ14C = − 123‰ in the Iberian Basin and are consistent with a mean northward bottom water flow. The characteristic of the water that flows from the west Atlantic through the Romanche Trench into the east Atlantic was determined by inspection of θ/Δ14C and θ/SiO2 diagrams. A mean potential temperature of θ = 1.50 ± .05°C was found for the inflowing water. A multi-box model including circulation, mixing, and chemical source terms in the deep water has been formulated. Linear programing and least-squares techniques have been used to obtain the transport and source parameters of the model from the observed tracer fields. Model calculations reveal an inflow through the Romanche Trench from the west Atlantic, which predominates over any other inflow, of (5 ± 2) Sv (potential temperature 1.50°C), a convective turnover of (150 ± 50) years and a vertical apparent diffusivity of (4 ± 1) cm2/s. Chemical source terms are in the expected ranges.


2021 ◽  
Vol 922 (2) ◽  
pp. L31
Author(s):  
Siyao Xu ◽  
David H. Weinberg ◽  
Bing Zhang

Abstract Extragalactic fast radio bursts (FRBs) have large dispersion measures (DMs) and are unique probes of intergalactic electron density fluctuations. By using the recently released First CHIME/FRB Catalog, we reexamined the structure function (SF) of DM fluctuations. It shows a large DM fluctuation similar to that previously reported in Xu & Zhang, but no clear correlation hinting toward large-scale turbulence is reproduced with this larger sample. To suppress the distortion effect from FRB distances and their host DMs, we focus on a subset of CHIME catalog with DM < 500 pc cm−3. A trend of nonconstant SF and nonzero correlation function (CF) at angular separations θ less than 10° is seen, but with large statistical uncertainties. The difference found between SF and that derived from CF at θ ≲ 10° can be ascribed to the large statistical uncertainties or the density inhomogeneities on scales on the order of 100 Mpc. The possible correlation of electron density fluctuations and inhomogeneities of density distribution should be tested when several thousands of FRBs are available.


2016 ◽  
Vol 467 (1) ◽  
pp. 280-283 ◽  
Author(s):  
M. B. Gokhberg ◽  
E. V. Olshanskaya ◽  
O. G. Chkhetiani ◽  
S. L. Shalimov ◽  
O. M. Barsukov

2019 ◽  
Vol 42 (3) ◽  
pp. 472-484 ◽  
Author(s):  
Arvind Kumar Prajapati ◽  
Rajendra Prasad

The aim of this paper is the construction of a new model reduction technique for large scale stable linear dynamic systems. It is principally focused on the dominant modes and time moments retention. This reduction implicates the translation of the overall important features confined in the large scale complete order model into the lower order system, allowing the computation of approximant denominator by using generalized pole clustering method. The approximant numerator is obtained by means of the factor division algorithm. As a result, a lower order system is obtained. To demonstrate its effectiveness, to highlight some fundamental of its features, and to accomplish its accuracy, a comparative study is done. Two standard numerical examples are taken, where approximant model computed by the proposed method is compared with the reduced order models computed from the recently proposed methods as well as well-known model reduction schemes. The paper is also emphasized on the design of compensator by using moment matching algorithm with the help of the reduced model. The design of compensator is validated and illustrated with the help of a standard numerical example taken from the literature.


2010 ◽  
Vol 408 (4) ◽  
pp. 2397-2412 ◽  
Author(s):  
Francesco Montesano ◽  
Ariel G. Sánchez ◽  
Stefanie Phleps
Keyword(s):  

Geophysics ◽  
1988 ◽  
Vol 53 (3) ◽  
pp. 375-385 ◽  
Author(s):  
R. R. B. von Frese ◽  
D. N. Ravat ◽  
W. J. Hinze ◽  
C. A. McGue

Instabilities and the large matrices which are common to inversions of regional magnetic and gravity anomalies often complicate the use of efficient least‐squares matrix procedures. Inversion stability profoundly affects anomaly analysis, and hence it must be considered in any application. Wildly varying or unstable solutions are the products of errors in the anomaly observations and the integrated effects of observation spacing, source spacing, elevation differences between sources and observations, geographic coordinate attributes, geomagnetic field attitudes, and other factors which influence the conditioning of inversion. Solution instabilities caused by ill‐posed parameters can be efficiently minimized by ridge regression with a damping factor large enough to stabilize the inversion, but small enough to produce an analytically useful solution. An effective choice for the damping factor is facilitated by plotting damping factors against residuals between observed and modeled anomalies and by then comparing this curve to curves of damping factors plotted against solution variance or the residuals between predicted anomaly maps representing the processing objective (e.g., downward continuation, differential reduction to the radial pole, etc.). To obtain accurate and efficient large‐scale inversions of anomaly data, a procedure based on the superposition principle of potential fields may be used. This method involves successive inversions of residuals between the observations and various stable model fields which can be readily accommodated by available computer memory. Integration of the model fields yields a well‐resolved representation of the observed anomalies corresponding to an integrated model which normally could not be obtained by direct inversion because the memory requirements would be excessive. MAGSAT magnetic anomaly inversions over India demonstrate the utility of these procedures for improving the geologic analysis of potential field anomalies.


Sign in / Sign up

Export Citation Format

Share Document