Improved inversion of geopotential field anomalies for lithospheric investigations

Geophysics ◽  
1988 ◽  
Vol 53 (3) ◽  
pp. 375-385 ◽  
Author(s):  
R. R. B. von Frese ◽  
D. N. Ravat ◽  
W. J. Hinze ◽  
C. A. McGue

Instabilities and the large matrices which are common to inversions of regional magnetic and gravity anomalies often complicate the use of efficient least‐squares matrix procedures. Inversion stability profoundly affects anomaly analysis, and hence it must be considered in any application. Wildly varying or unstable solutions are the products of errors in the anomaly observations and the integrated effects of observation spacing, source spacing, elevation differences between sources and observations, geographic coordinate attributes, geomagnetic field attitudes, and other factors which influence the conditioning of inversion. Solution instabilities caused by ill‐posed parameters can be efficiently minimized by ridge regression with a damping factor large enough to stabilize the inversion, but small enough to produce an analytically useful solution. An effective choice for the damping factor is facilitated by plotting damping factors against residuals between observed and modeled anomalies and by then comparing this curve to curves of damping factors plotted against solution variance or the residuals between predicted anomaly maps representing the processing objective (e.g., downward continuation, differential reduction to the radial pole, etc.). To obtain accurate and efficient large‐scale inversions of anomaly data, a procedure based on the superposition principle of potential fields may be used. This method involves successive inversions of residuals between the observations and various stable model fields which can be readily accommodated by available computer memory. Integration of the model fields yields a well‐resolved representation of the observed anomalies corresponding to an integrated model which normally could not be obtained by direct inversion because the memory requirements would be excessive. MAGSAT magnetic anomaly inversions over India demonstrate the utility of these procedures for improving the geologic analysis of potential field anomalies.

Geosciences ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 41
Author(s):  
Tim Jurisch ◽  
Stefan Cantré ◽  
Fokke Saathoff

A variety of studies recently proved the applicability of different dried, fine-grained dredged materials as replacement material for erosion-resistant sea dike covers. In Rostock, Germany, a large-scale field experiment was conducted, in which different dredged materials were tested with regard to installation technology, stability, turf development, infiltration, and erosion resistance. The infiltration experiments to study the development of a seepage line in the dike body showed unexpected measurement results. Due to the high complexity of the problem, standard geo-hydraulic models proved to be unable to analyze these results. Therefore, different methods of inverse infiltration modeling were applied, such as the parameter estimation tool (PEST) and the AMALGAM algorithm. In the paper, the two approaches are compared and discussed. A sensitivity analysis proved the presumption of a non-linear model behavior for the infiltration problem and the Eigenvalue ratio indicates that the dike infiltration is an ill-posed problem. Although this complicates the inverse modeling (e.g., termination in local minima), parameter sets close to an optimum were found with both the PEST and the AMALGAM algorithms. Together with the field measurement data, this information supports the rating of the effective material properties of the applied dredged materials used as dike cover material.


Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1310
Author(s):  
Hajer Azaiez ◽  
Hakim Gabtni ◽  
Mourad Bédir

Electric resistivity sounding and tomography, as well as electromagnetic sounding, are the classical methods frequently used for hydrogeological studies. In this work, we propose the development and implementation of an original integrated approach using the unconventional hydro–geophysical methods of gravity and seismic reflection for the fast, large–scale characterization of hydrogeological potential using the Ain El Beidha plain (central Tunisia) as an analogue. Extending the values of vintage petroleum seismic reflection profiles and gravity data, in conjunction with available geological and hydrogeological information, we performed an advanced analysis to characterize the geometry of deep tertiary (Oligocene and Eocene) aquifers in this arid area. Residual and tilt angle gravity maps revealed that most gravity anomalies have a short wavelength. The study area was mainly composed of three major areas: the Oued Ben Zitoun and Ain El Beidha basins, which are both related to negative gravity trends corresponding to low–density subsiding depocenters. These basins are separated by an important NE–SW trend called “El Gonna–J. El Mguataa–Kroumet Zemla” gravity high. Evaluation of the superposition of detected lineaments and Euler deconvolution solutions’ maps showed several NE–SW and N–S relay system faults. The 3D density inversion model using a lateral and vertical cutting plane suggested the presence of two different tectonic styles (thin VS thick). Results from the gravity analysis were in concordance with the seismic analysis. The deep Oligocene and Eocene seismic horizons were calibrated to the hydraulic wells and surrounding outcrops. Oligocene and Eocene geological reservoirs appear very fractured and compartmented. The faulting network also plays an important role in enhancing groundwater recharge process of the Oligocene and Eocene aquifers. Finally, generated isochron maps provided an excellent opportunity to develop future comprehensive exploration surveys over smaller and more favorable areas’ sub–basins.


Tectonics ◽  
1988 ◽  
Vol 7 (5) ◽  
pp. 991-1013 ◽  
Author(s):  
J. Y. Collot ◽  
P. Rigolot ◽  
F. Missègue

Author(s):  
Xianglan Bai ◽  
Guang-Xin Huang ◽  
Xiao-Jun Lei ◽  
Lothar Reichel ◽  
Feng Yin
Keyword(s):  

Author(s):  
Wayne Strasser ◽  
Francine Battaglia ◽  
Keith Walters

Non-zonal hybrid RANS-LES models, i.e. those which do not rely on user-prescribed zones for activating RANS or LES, have shown promise in accurately resolving the energy-containing and highly anisotropic large-scale motions in complex separated flows. In particular, the recently proposed dynamic hybrid RANS-LES (DHRL) approach, a method which relies on the continuity of turbulence production through the RANS-to-LES transition zone, has been validated for several different compressible and incompressible single phase flow problems and has been found to be accurate and relatively insensitive to mesh resolution. Time-averaged source terms are used to augment the momentum balance. An added benefit of the DHRL is the ability to directly couple any combination of RANS and LES models into a hybrid model without any change to numerical treatment of the transition region. In this study, an attempt is made to extend the application of this model to multiphase flows using two open literature coaxial two-stream injectors involving non-Newtonian liquids. For the first time, the new model has been successfully implemented in a multiphase framework, combining the SST RANS model with MILES LES approach. Favre averaging is used to ensure consistency between the momentum equations and the density fluctuations. It was found that the momentum source terms must be density weighted in order to ensure stability of the solution. Primary atomization findings with a stable model are encouraging. The spray character with the new model was somewhere between that of a RANS model and the LES result. Droplet sizes, which are indicative of the shear layer energy, for the RANS model were greater than the hybrid results, which were comparable to the LES result and matched the experimental expectation. Additionally, the new approach showed a liquid core breakup length close to that expected from the literature.


2018 ◽  
Vol 26 (2) ◽  
pp. 243-257 ◽  
Author(s):  
Zichao Yan ◽  
Yanfei Wang

AbstractFull waveform inversion is a large-scale nonlinear and ill-posed problem. We consider applying the regularization technique for full waveform inversion with structure constraints. The structure information was extracted with difference operators with respect to model parameters. And then we establish an {l_{p}}-{l_{q}}-norm constrained minimization model for different choices of parameters p and q. To solve this large-scale optimization problem, a fast gradient method with projection onto convex set and a multiscale inversion strategy are addressed. The regularization parameter is estimated adaptively with respect to the frequency range of the data. Numerical experiments on a layered model and a benchmark SEG/EAGE overthrust model are performed to testify the validity of this proposed regularization scheme.


2020 ◽  
Author(s):  
Anne Socquet ◽  
Lou Marill ◽  
David Marsan ◽  
Baptiste Rousset ◽  
Mathilde Radiguet ◽  
...  

<p>The precursory activity leading up to the Tohoku-Oki earthquake of 2011 has been suggested to feature both long- and short-term episodes of decoupling and suggests a particularly complex slow slip history. The analysis of the F3 solution of the Japanese GPS network suggested that an accelerated slip occurred in the deeper part of the seismogenic zone during the 10 years preceding the earthquake (Heki & Mitsui, EPSL 2013; Mavrommatis et al., GRL 2014; Yokota & Koketsu, Nat. Com. 2015). During the two months preceding the earthquake, no anomaly in the GPS position time series has been revealed so far, although several anomalous geophysical signals have been reported (an extended foreshock crisis near the future hypocenter (Kato et al., Science 2012), a synchronized increase of intermediate-depth background seismicity (Bouchon et al., Nat Geosc. 2016), a signal in ocean-bottom pressure gauges and on-land strainmeter time series (Ito et al., Tectonoph. 2013), and large scale gravity anomalies that suggest deep-seated slab deformation processes (Panet et al., Nat. Geosc. 2018 ; Wang & Burgmann, GRL 2019)).</p><p>We present novel results based on an independent analysis of the Japanese GPS data set. We perform a full reprocessing of the raw data with a double-difference approach, a systematic analysis of the obtained time-series, including noise characterization and network filtering, and make a robust assessment of long- and short-term tectonic aseismic transients preceding the Tohoku-Oki earthquake. An accelerated slip on the lower part of the seismogenic zone over the last decade is confirmed, not only below the epicenter of Tohoku-Oki earthquake but also further south, offshore Boso peninsula, which is a worrying sign of an on-going slow decoupling east of Tokyo. At shorter time-scale, first results seem compatible with a slow slip close to the epicenter initiating ~ 2 months before the mainshock.</p>


Sign in / Sign up

Export Citation Format

Share Document