Numerical Study of Convective Heat Transfer From Expanding Annular Pipe Flows

Author(s):  
Khaled J. Hammad

Convective heat transfer from suddenly expanding annular pipe flows are numerically investigated within the steady laminar flow regime. A parametric study is performed to reveal the influence of the annular diameter ratio, k, the Prandtl number, Pr, and the Reynolds number, Re, over the following range of parameters: k = {0, 0.5, 0.7}, Pr = {0.7, 1, 7, 100}, and Re = {25, 50, 100}. Heat transfer enhancement downstream of the expansion plane is only observed for Pr > 1. Peak wall-heat-transfer-rates always appear downstream of the flow reattachment point, in the case of suddenly expanding round pipe flows, i.e. k = 0. However, for suddenly expanding annular pipe flows, i.e., k = 0.5 and 0.7, peak wall-heat-transfer-rates always appear upstream of the flow reattachment point. The observed heat transfer augmentation is more dramatic for suddenly expanding annular flows, in comparison with the one observed for suddenly expanding pipe flows. For a given annular diameter ratio and Reynolds number, increasing the Prandtl number, always results in higher wall-heat-transfer-rates downstream the expansion plane.

Author(s):  
Khaled J. Hammad

Non-isothermal suddenly expanding annular pipe flows of a shear-thinning non-Newtonian fluid are numerically studied within the steady laminar flow regime. The power-law constitutive equation is used to model the shear-thinning rheology of interest. A parametric study is performed to reveal the influence of annular-nozzle-diameter-ratio, k, power-law index, n, and Prandtl numbers over the following range of parameters: k = {0, 0.5}; n = {1, 0.6}; and Pr = {1, 10, 100}. Heat transfer enhancement, i.e., wall heat transfer rates higher than the fully developed ones downstream of the expansion plane, is observed only for Pr = 10 and 100. In the case of Pr = 1, wall heat transfer rates monotonically increase to the fully developed value. Higher Pr, k, and n values, in general, result in more significant heat transfer enhancement downstream of the expansion plane. Further, shear-thinning non-Newtonian flows display two local peak wall heat transfer rates, in comparison with only one peak value in the case of Newtonian flows.


1974 ◽  
Author(s):  
S. Koncar-Djurdjevic ◽  
M. Mitrovic ◽  
S. Cvijovic ◽  
G. Popovic ◽  
Dimitrije Voronjec

Author(s):  
Hasan Gunes ◽  
Sertac Cadirci

In this study we show that the POD can be used as a useful tool to solve inverse design problems in thermo-fluids. In this respect, we consider a forced convection problem of air flow in a grooved channel with periodically mounted constant heat-flux heat sources. It represents a cooling problem in electronic equipments where the coolant is air. The cooling of electronic equipments with constant periodic heat sources is an important problem in the industry such that the maximum operating temperature must be kept below a value specified by the manufacturer. Geometric design in conjunction with the improved convective heat transfer characteristics is important to achieve an effective cooling. We obtain a model based on the proper orthogonal decomposition for the convection optimization problem such that for a given channel geometry and heat flux on the chip surface, we search for the minimum Reynolds number (i.e., inlet flow speed) for a specified maximum surface temperature. For a given geometry (l = 3.0 cm and h = 2.3 cm), we obtain a proper orthogonal decomposition (POD) model for the flow and heat transfer for Reynolds number in the range 1 and 230. It is shown that the POD model can accurately predict the flow and temperature field for off-design conditions and can be used effectively for inverse design problems.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Hakan Coşanay ◽  
Hakan F. Oztop ◽  
Fatih Selimefendigil

Purpose The purpose of this study is to perform computational analysis on the steady flow and heat transfer due to a slot nanojet impingement onto a heated moving body. The object is moving at constant speed and nanoparticle is included in the heat transfer fluid. The unsteady flow effects and interactions of multiple impinging jets are also considered. Design/methodology/approach The finite volume method was used as the solver in the numerical simulation. The movement of the hot body in the channel is also considered. Influence of various pertinent parameters such as Reynolds number, jet to target surface spacing and solid nanoparticle volume fraction on the convective heat transfer characteristics are numerically studied in the transient regime. Findings It is found that the flow field and heat transfer becomes very complicated due to the interaction of multiple impinging jets with the movement of the hot body in the channel. Higher heat transfer rates are achieved with higher values of Reynolds number while the inclusion of nanoparticles resulted in a small impact on flow friction. The middle jet was found to play an important role in the heat transfer behavior while jet and moving body temperatures become equal after t = 80. Originality/value Even though some studies exist for the application of jet impingement heat transfer for a moving plate, the configuration with a solid moving hot body on a moving belt under the impacts of unsteady flow effects and interactions of multiple impinging jets have never been considered. The results of the present study will be helpful in the design and optimization of various systems related to convective drying of products, metal processing industry, thermal management in electronic cooling and many other systems.


2020 ◽  
Vol 24 (2 Part A) ◽  
pp. 767-775 ◽  
Author(s):  
Djamel Sahel ◽  
Houari Ameur ◽  
Touhami Baki

The baffling technique is well-known for its efficiency in terms of enhancement of heat transfer rates throught channels. However, the baffles insert is accompanied by an increase in the friction factor. This issue remains a great challenge for the designers of heat exchangers. To overcome this issue, we suggest in the present paper a new design of baffles which is here called graded baffle-design. The baffles have an up- or down-graded height along the channel length. This geometry is characterized by two ratios: up-graded baffle ratio and down-graded baffle ratio which are varied from 0-0.08. For a range of Reynolds number varying from 104 to 2 ? 104, the turbulent flow and heat transfer characteristics of a heat exchanger channel are numerically studied by the computer code FLUENT. The obtained results revealed an enhancement in the thermohydraulic performance offered by the new suggested design. For the channel with a down-graded baffle ratio equal to 0.08, the friction factors decreased by 4-8%


Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5485
Author(s):  
Rajendra S. Rajpoot ◽  
Shanmugam. Dhinakaran ◽  
Md. Mahbub Alam

The present study deals with the numerical simulation of mixed convective heat transfer from an unconfined heated square cylinder using nanofluids (Al2O3-water) for Reynolds number (Re) 10–150, Richardson number (Ri) 0–1, and nanoparticles volume fractions (φ) 0–5%. Two-phase modelling approach (i.e., Eulerian-mixture model) is adopted to analyze the flow and heat transfer characteristics of nanofluids. A square cylinder with a constant temperature higher than that of the ambient is exposed to a uniform flow. The governing equations are discretized and solved by using a finite volume method employing the SIMPLE algorithm for pressure–velocity coupling. The thermo-physical properties of nanofluids are calculated from the theoretical models using a single-phase approach. The flow and heat transfer characteristics of nanofluids are studied for considered parameters and compared with those of the base fluid. The temperature field and flow structure around the square cylinder are visualized and compared for single and multi-phase approaches. The thermal performance under thermal buoyancy conditions for both steady and unsteady flow regimes is presented. Minor variations in flow and thermal characteristics are observed between the two approaches for the range of nanoparticle volume fractions considered. Variation in φ affects CD when Reynolds number is varied from 10 to 50. Beyond Reynolds number 50, no significant change in CD is observed with change in φ. The local and mean Nusselt numbers increase with Reynolds number, Richardson number, and nanoparticle volume fraction. For instance, the mean Nusselt number of nanofluids at Re = 100, φ = 5%, and Ri = 1 is approximately 12.4% higher than that of the base fluid. Overall, the thermal enhancement ratio increases with φ and decreases with Re regardless of Ri variation.


2021 ◽  
pp. 151-151
Author(s):  
Ruihao Zhang ◽  
Sixian Wang ◽  
Shan Qing ◽  
Zhumei Luo ◽  
Zhang Xiaohui

This paper focuses on the convective heat transfer characteristics of Fe3O4 /Water magnetic nanofluids under laminar and turbulent conditions. After verifying the accuracy of the experimental apparatus, the effects of magnetic field strength, concentration, Reynolds number and temperature on the convective heat transfer coefficient have been studied. The convective heat transfer characteristics of nanofluids under laminar and turbulent flow conditions were studied in depth, and the influence of each factor on the heat transfer coefficient was analyzed by orthogonal experimental design method. Under the laminar flow conditions, the convective heat transfer of magnetic nanofluids performed best when the Reynolds number was 2000, the magnetic field strength was 600, the temperature was 30? and the concentration was 2%. And the convective heat transfer coefficient (h) increased by 3.96% than the distilled water in the same conditions. In turbulent state, the convective heat transfer of magnetic nanofluids performed the best when the Re was 6000, the magnetic field strength was 600, the temperature was 40? and the concentration was 2%. The h increased by 11.31% than the distilled water in the same Reynolds number and the magnetic field strength conditions.


Sign in / Sign up

Export Citation Format

Share Document