Processing of Biodegradable Polymer Composite Using Soy Protein-Based Resin and Nanoclay

Author(s):  
Mohammad K. Hossain ◽  
Samira N. Shaily ◽  
Hadiya J. Harrigan ◽  
Terrie Mickens

A completely biodegradable composite was fabricated from an herbal polymer, soy protein concentrate (SPC) resin. Soy protein was modified by adding 30 wt% of glycerol and 5 wt% of poly vinyl alcohol (PVA) to enhance its mechanical as well as thermal property. 3%, 5%, 10%, and 20% nanoclay (NC) were infused into the system. To evaluate its mechanical properties, crystallinity, thermal properties, bonding interaction, and morphological evaluation, tensile, X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and Fourier transform infrared spectroscopy (FTIR) tests, and optical microscopy (OM) and scanning electron microscopy (SEM) evaluation were performed. Tensile tests showed that the addition of nanoclay improved the mechanical properties of the modified resin. Soy protein is hydrophilic due to the presence of amino acids that contain various polar groups such as amine, carboxyl, and hydroxyl. As a result, polar nanoclay particles that are exfoliated can be evenly dispersed in the SPC resin. From experimental results, it is clear that adding of nanoclay with SPC resin significantly increased the stiffness of the SPC resin. A combination of 5% clay, 30% glycerol, and 5% PVA with the modified SPC resulted in the maximum stress of 18 MPa and Young modulus of 958 MPa. The modified SPC showed a reduced failure strain as well. X-ray diffraction curves showed an improvement of crystallinity of the prepared resin with increasing amount of nanoclay. Interaction among soy, glycerol, PVA, and nanoclay was clearly demonstrated from the FTIR analysis. Optical microscopy (OM) and scanning electron microscopy (SEM) micrographs revealed rougher surface in the nanoclay infused SPC samples compared to that of the neat one. SEM evaluation revealed rougher fracture surface in the NC infused samples.

2021 ◽  
pp. 095400832110055
Author(s):  
Yang Wang ◽  
Yuhui Zhang ◽  
Yuhan Xu ◽  
Xiucai Liu ◽  
Weihong Guo

The super-tough bio-based nylon was prepared by melt extrusion. In order to improve the compatibility between bio-based nylon and elastomer, the elastomer POE was grafted with maleic anhydride. Scanning Electron Microscopy (SEM) and Thermogravimetric Analysis (TGA) were used to study the compatibility and micro-distribution between super-tough bio-based nylon and toughened elastomers. The results of mechanical strength experiments show that the 20% content of POE-g-MAH has the best toughening effect. After toughening, the toughness of the super-tough nylon was significantly improved. The notched impact strength was 88 kJ/m2 increasing by 1700%, which was in line with the industrial super-tough nylon. X-ray Diffraction (XRD) and Differential Scanning Calorimetry (DSC) were used to study the crystallization behavior of bio-based PA56, and the effect of bio-based PA56 with high crystallinity on mechanical properties was analyzed from the microstructure.


2017 ◽  
Vol 12 (1) ◽  
pp. 63-77 ◽  
Author(s):  
Siriporn Sirikingkaew ◽  
Nuta Supakata

This study presents the development of geopolymer bricks synthetized from industrial waste, including fly ash mixed with concrete residue containing aluminosilicate compound. The above two ingredients are mixed according to five ratios: 100:0, 95:5, 90:10, 85:15, and 80:20. The mixture's physico-mechanical properties, in terms of water absorption and the compressive strength of the geopolymer bricks, are investigated according to the TIS 168-2546 standard. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses are used to investigate the microstructure and the elemental and phase composition of the brick specimens. The results indicate that the combination of fly ash and concrete residue represents a suitable approach to brick production, as required by the TIS 168–2546 standard.


2016 ◽  
Vol 881 ◽  
pp. 422-426
Author(s):  
Carlos Maurício Fontes Vieira ◽  
Regina Maria Pinheiro ◽  
Sergio Neves Monteiro

This work has for objective to evaluate the microstructure of clayey ceramic incorporated with a waste in the form of sludge generated during treatment of effluent of a paper making industry. The microstructure of ceramics incorporated with 0 and 10 wt.% of waste, and then fired at 600°C, was evaluated by optical microscopy, scanning electron microscopy and X-ray diffraction. The results showed that the waste changes the microstructure of the clayey ceramic increasing the porosity, as well as forming new crystalline phases, mainly with calcium compounds.


2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Ruy A. Sá Ribeiro ◽  
Marilene G. Sá Ribeiro ◽  
Gregory P. Kutyla ◽  
Waltraud M. Kriven

To determine the viability of using a local resource for geopolymer synthesis, geopolymers were synthesized using metakaolin made from clay mined in the Amazonian region of Brazil. Samples were made with mixed potassium-sodium and pure sodium metakaolin-based geopolymer. Samples were also made using commercial metakaolin (CMK) from BASF, Inc. as a comparison to the Amazonian metakaolin (AMK). Scanning electron microscopy was used to investigate the microstructure of the materials. X-ray diffraction was able to confirm the formation of geopolymer. The mechanical properties of AMK material were nearly equivalent to those based on CMK. Neither CMK nor AMK reacted completely, although samples made with CMK showed less unreacted material. By increasing the mixing intensity and duration, the amount of residual unreacted material was substantially reduced, and mechanical properties were improved.


2017 ◽  
Vol 67 (5) ◽  
pp. 510 ◽  
Author(s):  
Han Gao ◽  
Wei Jiang ◽  
Jie Liu ◽  
Gazi Hao ◽  
Lei Xiao ◽  
...  

<p>An energetic co-crystal consisting of the most promising military explosive 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) and the most well-known oxidant applied in propellants ammonium perchlorate has been prepared with a simple solvent evaporation method. Scanning electron microscopy revealed that the morphology of co-crystal differs greatly from each component. The X-ray diffraction spectrum, FTIR, Raman spectra, and differential scanning calorimetry characterisation further prove the formation of the co-crystal. The result of determination of hygroscopic rate indicated the hygroscopicity was effectively reduced. At last, the crystallisation mechanism has been discussed.</p>


2014 ◽  
Vol 50 (1) ◽  
pp. 87-90 ◽  
Author(s):  
E. Aldirmaz ◽  
I. Aksoy

In this study, some physical and mechanical properties in Cu-9.97%Al-4.62%Mn (wt%) alloy were investigated by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and compression deformation test. Bainite phase were obtained in the samples according to SEM and XRD analyses. Compression stress was applied on the alloy in order to investigate the deformation effect on the bainite phase transformation. On the surface of the Cu-9.97%Al-4.62%Mn alloy after the deformation, both bainite and martensite variants formed.


2003 ◽  
Vol 801 ◽  
Author(s):  
A. Bassetti ◽  
E. Bonetti ◽  
A. L. Fiorini ◽  
J. Grbovic ◽  
A. Montone ◽  
...  

ABSTRACTMagnesium carbon nanocomposites for hydrogen storage have been synthesized by ball milling with different amount of benzene, acting as a lubricant. Their microstructure has been studied by X-ray diffraction and scanning electron microscopy, while the hydrogen desorption temperature has been tested by differential scanning calorimetry. Experimental results show that the microstructure after milling, the hydrogenation capabilities of the material and the reactivity with the air are related to the amount of additives. In particular the carbon to benzene ratio seems to play a major role. In fact, with an optimum value of carbon to benzene weight ratio of 1/6, the amount of carbon being 15 wt% of the milled mixture, a decomposition heat equal to 57% of pure MgH2 was measured, even after air manipulation of the sample.


2015 ◽  
Vol 817 ◽  
pp. 593-598
Author(s):  
Yan Feng Liang ◽  
Sheng Quan Dong ◽  
Gao Hong Li

In situ TiCp/Al-4.5wt.%Cu composites have been coated using an electro-less Ni-P plating technique. The morphology and composition of the plating coating have been examined by scanning electron microscopy, optical microscopy, and X-ray diffraction. The results indicated that the coating had a high-phosphorus amorphous microstructure. The coatings microstructures showed significantly changes when the citric acid concentration in the chemical bath was varied in the range 16-20g/L.


2012 ◽  
Vol 05 ◽  
pp. 551-558 ◽  
Author(s):  
A. RAHIMNEZHAD YAZDI ◽  
H.R. BAHARVANDI ◽  
H. ABDIZADEH ◽  
N. EHSANI

In this study Al 2 O 3- SiC nanocomposites have been fabricated by mixing of alumina and silicon carbide nano powders, followed by hot pressing at 1700°C. The mechanical properties and fracture mode of Al 2 O 3- SiC nanocomposites containing different volume fractions (5, 10 and 15%) of nano scale SiC particles were investigated and compared with those of alumina. Al 2 O 3- SiC powders were prepared by planetary milling in isopropanol. Fracture mode of specimens was investigated by means of scanning electron microscopy. Nanocomposites were tougher than alumina when they were hot pressed at the same temperature, and the values of nanocomposite's flexural strength and hardness were higher than those of alumina. Flexural strength, hardness and fracture toughness of the nanocomposites increase by increasing the volume percent of SiC up to 10% and then decrease slightly. The Scanning electron microscopy observations showed that fracture mode changes from intergranular for alumina to transgranular for nanocomposites. Finally X-ray diffraction analysis couldn't detect any chemical reactions between Al 2 O 3 and SiC particles.


Sign in / Sign up

Export Citation Format

Share Document