Investigation of Process Parameters on Dry Sliding Wear of Self-Lubricating Metal Matrix Composites

Author(s):  
Senthil Kumar Velukkudi Santhanam ◽  
Dhanashekar Manickam ◽  
Karthikeyan Sivagnanam

In recent years, conventional materials are rapidly replaced by advanced aluminium composites due to its lighter in weight and high-performance characteristics. These materials find vast applications in automotive components because of its excellent combination of properties such as high specific strength, high specific stiffness, better dimensional stability and enhanced wear characteristics. The present work is focused on hybrid composites manufactured by stir casting route where the A356 alloy is the matrix and SiC + Moringa Oleifera Ash (MOA) particles as reinforcements. The influence of Moringa Oleifera Ash (MOA) particles (self-lubricant) on the wear behaviour of the composites is studied. Fabricated composites are tested on a pin-on-disc test rig at dry sliding wear conditions to study the influencing input parameters such as load, sliding distance and composites. A356 Aluminium alloy is reinforced with 5% SiC as primary reinforcement, varying MOA particles with 1% and 3% as secondary reinforcement. The design of experiments (DOE) approach using Taguchi method was adopted to perform the experiments according to L9 orthogonal array and analyse the results. From Taguchi analysis, combination of best suited values is identified and reported. Inquest of influential wear test parameters and its effect on wear and friction is determined using the signal-to-noise ratio and analysis of variance (ANOVA).

2018 ◽  
Vol 7 (2.23) ◽  
pp. 446
Author(s):  
Pankaj R Jadhav ◽  
B R Sridhar ◽  
Madeva Nagaral ◽  
Jayasheel I Harti ◽  
V Auradi

The present works manages readiness of the composites by mix stirring method. A356 amalgam 4 wt. % of B4C and A356-4 wt. % of Graphite and A356-4% B4C-4% Graphite hybrid composites were readied. To enhance the wetting and uniform conveyance of the particles, fortifications were preheated to a temperature of 500 Degree Celsius. The arranged MMCs are subjected to examining SEM instrument which affirms the homogenous uniform appropriation of smaller scale B4C and Graphite particles in the lattice combination without agglomeration. The wear protection of arranged composites was examined by performing dry sliding wear test utilizing DUCOM made stick on plate mechanical assembly. The tests were directed at a consistent heap of 3kg and sliding separation of 4000m over a speed of 100, 200 and 300 rpm. So also the other arrangement of investigations were led at consistent sped of 300 rpm and sliding separation of 4000m and with changing heap of 1kg, 2kg, and 3kg. The outcomes demonstrated that the wear protections of the composites were improved than the lattice material.   


2015 ◽  
Vol 90 ◽  
pp. 148-156 ◽  
Author(s):  
O. Carvalho ◽  
M. Buciumeanu ◽  
S. Madeira ◽  
D. Soares ◽  
F.S. Silva ◽  
...  

2015 ◽  
Vol 766-767 ◽  
pp. 219-228 ◽  
Author(s):  
N.G. Siddeshkumar ◽  
G.S. Shiva Shankar ◽  
S. Basavarajappa

An attempt has been made to study the dry sliding wear behaviour of Aluminium based hybrid composites in room temperature.Al 2219 is used as base material with B4C and MoS2 as reinforcements. The hybrid composite were prepared by conventional stir casting technique. The dry sliding wear test were carried out for various parameters like sliding distance, applied load and sliding speed. The Optical Microscope and SEM results showed the presence of B4C and MoS2, which are fairly uniform and randomly dispersed on matrix material.XRD analysis, shown the presence of B4C and MoS2 phases in the prepared composites.The incorporation of reinforcement particles B4C and MoS2 reduces the specific wear rate of composites. The addition of MoS2 as a secondary reinforcement has significant effect on reducing specific wear rate of prepared composites. By using SEM worn surface of hybrid composites were studied.


2010 ◽  
Vol 126-128 ◽  
pp. 905-910 ◽  
Author(s):  
Mariyam Jameelah Ghazali ◽  
Mahamad Noor Wahab ◽  
Abdul Razak Daud ◽  
Jaharah A. Ghani

Dry sliding wear properties of aluminum nitride (AlN) reinforced aluminum silicon (Al-Si) alloy were investigated by using a pin-on-disc configuration tester. In this work, different weight percentages (5 and 10 wt%) of AlN was added into the Al-Si alloys. The samples were prepared by a stir casting process via a bottom pour technique which was then aged with a T6 condition prior to the wear test. Detailed analyses on the morphologies were conducted using scanning electron microscope (SEM) with the aid of an energy dispersive x-ray analyser (EDX). Prior to the heat treatment, the distribution of hard aluminum nitride particles that surrounded the Si phase had improved the hardness of the composites by 15%. The hardness value was found to be significantly increased about 80% for aged samples compared to un-aged samples. This was mainly contributed from precipitations of Si grain and intermetallic compounds; Mg2Si and FeSiAl5 formation in the alloys. Thus, a significant increased in wear resistance up to 56% was also observed especially at the highest applied load of 70N. Surface investigation by a scanning electron microscope (SEM) revealed that a combination of abrasion and adhesion wear mechanism was dominant for both un-aged and aged samples.


2014 ◽  
Vol 23 (3) ◽  
pp. 096369351402300 ◽  
Author(s):  
V. Saravanan ◽  
P.R. Thyla ◽  
S.R. Balakrishnan

In today's rapidly developing automobile and aeronautical industries, numerous composites are widely used for various applications. This increases the need for continuous research and development of a number of composites. This research work investigated various volume % of cenosphere reinforced AA6063 composites which were made by stir casting method. These composites were surveilled with the help of chemical analysis and scanning electron microscopy to ensure the distribution and bonding between reinforcement and matrix. The design of experiments (DOE) was used to plan the wear tests and the wear results were obtained. The dry sliding wear behaviour of composites was studied by means of a pin-on-disc wear test machine and the results were compared with pure AA6063. The influences of critical parameters such as applied load, sliding speed were evaluated. Enhanced wear properties were observed with addition of cenospheres in aluminium alloy. Disc brake rotor was cast with optimum amount of cenosphere % using sand moulding.


2014 ◽  
Vol 97 ◽  
pp. 694-702 ◽  
Author(s):  
K. Umanath ◽  
S.T. Selvamani ◽  
K. Palanikumar ◽  
R. Sabarikreeshwaran

Sign in / Sign up

Export Citation Format

Share Document