Assessment of Induced Delamination During End-Milling of Natural Fiber Reinforced Composites: A Statistical Analysis

Author(s):  
Khalid I. Alzebdeh ◽  
Mahmoud M. A. Nassar ◽  
Nasr Al-Hinai

The use of natural fiber reinforced composites has emerged as an advantageous option in many industrial applications. Generally, composites are manufactured in net or near-net shape, but under specific design specifications, secondary manufacturing processes such as drilling, milling and turning become a requirement. In this context, current paper presents an experimental study that investigates the machinability of newly developed natural fiber composites under conventional end-milling. Two types of bio-composites; date palm fronds reinforced polypropylene (DPF/PP) and pine needles reinforced polypropylene composite (PN/PP) were developed and physically tested in order to optimize their mechanical strength. Then, machinability of such class of bio-composites is statistically analyzed using Design of Experiment method. Statistical modeling including response surface plots are utilized to analyze the combined effect of input processing parameters (feed rate, axial depth, spindle speed) on the induced delamination during end-milling. It is shown that feed rate is the most dominant factors in DPF/PP milling, and axial depth of cut is the most significant factor on PN/PP milling. Results are also compared with those of milled neat polypropylene, which confirm that delamination of machined bio-composites can be improved over the neat polypropylene matrix. This qualifies the developed bio-composites to be used in industrial applications in which machining is required.

2014 ◽  
Vol 657 ◽  
pp. 397-401
Author(s):  
Dragos Hodorogea

Due to ecological and sustainability constraints, in late years we see great achievements in green technology in the field of materials science. The development of high-performance biocomposites (made from natural resources) is increasing worldwide. The challenge in working with natural fiber reinforced composites is the large spectrum of possibilities for making them.Biocomposites properties are influenced by a number of variables, including the fiber type, environmental conditions (where the plant fibers are sourced), processing methods, and any modification of the fiber. It is well known that recently exists a large interest in the industrial applications of composites containing biofibers reinforced with biopolymers. The characteristics of reinforcing fibers used in biocomposites, including source, type, structure, composition, as well as mechanical properties, will be reviewed. The variety of biocomposite processing techniques as well as the factors (moisture content, fiber type and content, coupling agents and their influence on composites properties) affecting these processes will be discussed.Techniques for processing the natural fiber reinforced composites will be discussed based on thermoplastic matrices (compression molding, extrusion, injection molding, and thermoforming), and thermosets (resin transfermolding, sheet molding compound). Their influence on mechanical performance (tensile, flexural and impact properties) will be evaluated. Finally, the work will conclude with recent developments and future trends of biocomposites.


Author(s):  
Keagisitswe Setswalo ◽  
Namoshe Molaletsa ◽  
Oluseyi Philip Oladijo ◽  
Esther Titilayo Akinlabi ◽  
Mavinkere Rangappa Sanjay ◽  
...  

Throughout generations, research on natural fiber-reinforced composites (NFRCs) has been growing and yielding promising results. The notion of blending natural fibers with polymers comes from the composite’s suitable properties, not limited to low density, availability at a low price, biodegradability, and environmental friendliness. The quest for high-performing and marketable NFRCs is driving innovation in the synthesis of such materials. A suitable combination of parameters that optimizes the mechanical and functional properties of the composites without increasing the cost of production is desired. The main objective of this review is to evaluate some of the parameters that influence the behavior and properties of NFRCs. The influence of alkaline modification and natural fiber processing parameters, such as particle size, modification concentration, soaking duration, processing temperature, fiber-to-polymer ratio, and adoption of additives, on composites are discussed. This review summarizes some of the work and provides some directions in the search of an all-around performing economic NFRC.


2021 ◽  
Vol 36 (2) ◽  
pp. 114-130
Author(s):  
S. Sathish ◽  
L. Prabhu ◽  
S. Gokulkumar ◽  
N. Karthi ◽  
D. Balaji ◽  
...  

Abstract Nowadays, sustainable and eco-friendly products are gaining more attention in various engineering industries owing to their considerable strength-to-weight ratio, abundant availability, and recyclability. The properties of biofibers depend on the cultivation method, environmental conditions, and extraction method. Biofibers are hauled out by dew retting, water retting, and mechanical decortication methods. The properties of natural fiber–reinforced composites can be enhanced by proper physical and chemical treatments. The aim of this study is to propose a complete evaluation of the different extraction methods applied on natural fibers. Various physical and chemical treatment methods were used to ascertain the properties of optimized natural fiber-reinforced composites for various industrial applications. The key findings derived from various existing data and the chemical treatment results of the biofiber-reinforced composite are specifically highlighted with critical assessment. The properties and use of natural fiber-reinforced composites in the various fields of applications have made them candidates of choice over synthetic petroleum–based fibers.


2019 ◽  
Vol 12 (1) ◽  
pp. 4-76 ◽  
Author(s):  
Krittirash Yorseng ◽  
Mavinkere R. Sanjay ◽  
Jiratti Tengsuthiwat ◽  
Harikrishnan Pulikkalparambil ◽  
Jyotishkumar Parameswaranpillai ◽  
...  

Background: This era has seen outstanding achievements in materials science through the advances in natural fiber-based composites. The new environmentally friendly and sustainability concerns have imposed the chemists, biologists, researchers, engineers, and scientists to discover the engineering and structural applications of natural fiber reinforced composites. Objective: To present a comprehensive evaluation of information from 2000 to 2018 in United States patents in the field of natural fibers and their composite materials. Methods: The patent data have been taken from the external links of US patents such as IFI CLAIMS Patent Services, USPTO, USPTO Assignment, Espacenet, Global Dossier, and Discuss. Results: The present world scenario demands the usage of natural fibers from agricultural and forest byproducts as a reinforcement material for fiber reinforced composites. Natural fibers can be easily extracted from plants and animals. Recently natural fiber in nanoscale is preferred over micro and macro scale fibers due to its superior thermo-mechanical properties. However, the choice of macro, micro, and nanofibers depends on their applications. Conclusion: This document presents a comprehensive evaluation of information from 2000 to 2018 in United States patents in the field of natural fibers and their composite materials.


Author(s):  
Haasith Chittimenu ◽  
Monesh Pasupureddy ◽  
Chandrasekar Muthukumar ◽  
Senthilkumar Krishnasamy ◽  
Senthil Muthu Kumar Thiagamani ◽  
...  

2021 ◽  
Vol 7 (2) ◽  
pp. 58
Author(s):  
Celal Çakıroğlu ◽  
Gebrail Bekdaş

In the recent years natural fiber reinforced composites are increasingly receiving attention from the researchers and engineers due to their mechanical properties comparable to the conventional synthetic fibers and due to their ease of preparation, low cost and density, eco-friendliness and bio-degradability. Natural fibers such as kenaf or flux are being considered as a viable replacement for glass, aramid or carbon. Extensive experimental studies have been carried out to determine the mechanical behavior of different natural fiber types such as the elastic modulus, tensile strength, flexural strength and the Poisson’s ratio. This paper presents a review of the various experimental studies in the field of fiber reinforced composites while summarizing the research outcome about the elastic properties of the major types of natural fiber reinforced composites. Furthermore, the performance of a kenaf reinforced composite plate is demonstrated using finite element analysis and results are compared to a glass fiber reinforced laminated composite plate.


Sign in / Sign up

Export Citation Format

Share Document