Natural Convection in a Square Cavity Utilizing Different Nanofluids in Presence of Constant Magnetic Field With Brownian Motion Effect

Author(s):  
Misarah Abdelaziz ◽  
Wael El-Maghlany ◽  
Ashraf S. Ismail

Natural convection in a square cavity filled with water-Al2 O3 nanofluid is studied numerically. Upper, lower, and left surfaces are insulated. Right wall is at low temperature, while two heat sources are kept at high temperature. The sources are vertically attached to the horizontal walls of a cavity . A uniform magnetic field is applied in a horizontal direction. Effective thermal conductivity and viscosity of nanofluids are obtained using Koo-Kleinstreuer model which implements the Brownian motion of nanoparticles effect. Steady state laminar regime is assumed. The conservation of mass, momentum, and energy equations are solved using finite volume method. The numerical results are reported for the effect of Rayleigh number, solid volume fraction, and Hartmann number on the streamlines as well as the isotherms. In addition, the results for average Nusselt number are presented for various parametric conditions. This study is presented in the following ranges, Rayleigh number from 103 to 105, Hartmann number from 0 to 60, and solid volume fraction from 0 to 0.06, while the Prandtl number which represents water is kept constant at 6.2. The results showed that heat transfer rate decreases with the rise of Hartmann number and increases with the rise of Rayleigh number, and volume fraction. Moreover, results showed that heat sources positions, lengths and intensities have crucial effect on heat transfer rate. Additionally, the effect of nanofluids type was studied, it was found that water-Cu nanofluid enhances the heat transfer better than water-Al2O3, water-CuO and water-TiO2 nanofluids.

Author(s):  
Subramanian Muthukumar ◽  
Selvaraj Sureshkumar ◽  
Arthanari Malleswaran ◽  
Murugan Muthtamilselvan ◽  
Eswari Prem

Abstract A numerical investigation on the effects of uniform and non-uniform heating of bottom wall on mixed convective heat transfer in a square porous chamber filled with nanofluid in the appearance of magnetic field is carried out. Uniform or sinusoidal heat source is fixed at the bottom wall. The top wall moves in either positive or negative direction with a constant cold temperature. The vertical sidewalls are thermally insulated. The finite volume approach based on SIMPLE algorithm is followed for solving the governing equations. The different parameters connected with this study are Richardson number (0.01 ≤ Ri ≤ 100), Darcy number (10−4 ≤ Da ≤ 10−1), Hartmann number (0 ≤ Ha ≤ 70), and the solid volume fraction (0.00 ≤ χ ≤ 0.06). The results are presented graphically in the form of isotherms, streamlines, mid-plane velocities, and Nusselt numbers for the various combinations of the considered parameters. It is observed that the overall heat transfer rate is low at Ri = 100 in the positive direction of lid movement, whereas it is low at Ri = 1 in the negative direction. The average Nusselt number is lowered on growing Hartmann number for all considered moving directions of top wall with non-uniform heating. The low permeability, Da = 10−4 keeps the flow pattern same dominating the magnetic field, whereas magnetic field strongly affects the flow pattern dominating the high Darcy number Da = 10−1. The heat transfer rate increases on enhancing the solid volume fraction regardless of the magnetic field.


2012 ◽  
Vol 16 (2) ◽  
pp. 489-501 ◽  
Author(s):  
Ehsan Sourtiji ◽  
Seyed Hosseinizadeh

A numerical study of natural convection heat transfer through an alumina-water nanofluid inside L-shaped cavities in the presence of an external magnetic field is performed. The study has been carried out for a wide range of important parame?ters such as Rayleigh number, Hartmann number, aspect ratio of the cavity and solid volume fraction of the nanofluid. The influence of the nanoparticle, buoyancy force and the magnetic field on the flow and temperature fields have been plotted and discussed. The results show that after a critical Rayleigh number depending on the aspect ratio, the heat transfer in the cavity rises abruptly due to some significant changes in flow field. It is also found that the heat transfer enhances in the presence of the nanoparticles and increases with solid volume fraction of the nanofluid. In addition, the performance of the nanofluid utilization is more effective at high Ray?leigh numbers. The influence of the magnetic field has been also studied and de?duced that it has a remarkable effect on the heat transfer and flow field in the cavity that as the Hartmann number increases the overall Nusselt number is significantly decreased specially at high Rayleigh numbers.


2021 ◽  
pp. 326-326
Author(s):  
Mohamed El Hattab ◽  
Zakaria Lafdaili

In this paper, we present a numerical study of turbulent natural convection in a square cavity differentially heated and filled with nanofluid and subjected to an inclined magnetic field. The standard k-? model was used as the turbulence model. The transport equations were discretized by the finite volume method using the SIMPLE algorithm. The influence of the Rayleigh number, the Hartmann number, the orientation angle of the applied magnetic field, the type of nanoparticles as well as the volume fraction of nanoparticles, on the hydrodynamic and thermal characteristics of the nanofluid was illustrated and discussed in terms of streamlines, isotherms and mean Nusselt number. The results obtained show that the heat transfer rate increases with increasing Rayleigh number and orientation angle of the magnetic field but it decreases with increasing Hartmann number. In addition, heat transfer improves with increasing volume fraction and with the use of Al2O3 nanoparticles.


2014 ◽  
Vol 31 (7) ◽  
pp. 1342-1360 ◽  
Author(s):  
Masoud Kharati Koopaee ◽  
Iman Jelodari

Purpose – The objective of present research is to characterize the unsteady thermal behavior of a square enclosure filled with water-Al2O3 nanofluids in the presence of oriented magnetic fields. The purpose this paper is to study the effect of pertinent parameters on the transient natural convection in the enclosure. Design/methodology/approach – In this research, an in-house implicit finite volume code based on the SIMPLE algorithm is utilized for numerical calculations. To ensure the accuracy of results, comparisons are also made with previous works in literature. In this study, a constant strength magnetic field is concerned and for Rayleigh numbers of Ra=103, 104 and 105 the effect of magnetic field orientation with respect to the case of zero inclination on the thermal performance of cavity is investigated at Hartmann number range of Ha=15-90. In the present work, the nano-particle volume fractions range from φ=0-0.06. Findings – Results show that when Rayleigh number is Ra=103, the inclination angle, solid particles and Hartmann number has no effect on the transient behavior. It is shown that during the time advancement to steady condition, the heat transfer rate relative to zero inclination angle, may reach to a maximum value. This relative maximum heat transfer increases as the inclination angle increases and decreases as the solid volume fraction increases. The effect of increase in Hartmann number is to decrease this maximum value at Rayleigh number of Ra=104 and at Rayleigh number of Ra=105, depending on the Hartmann number, this value may increase or decrease. It is also found that an increase in Hartmann number leads to delay the appearance of the relative maximum value of heat transfer. Results show that this maximum value is of more significance at zero solid volume fraction when inclination angle is 90 degrees and Hartmann number is Ha=60. Originality/value – Limited works could be found in the literature regarding the idea of using nanofluids as the working fluid in an enclosure in the presence of magnetic field. In these works, the steady state thermal behavior of enclosures subjected to fixed magnetic fields is concerned. In the present work, the unsteady thermal behavior is concerned and the effect of magnetic field orientation angles on transient heat transfer performance of the enclosure at different Rayleigh and Hartmann numbers and solid volume fractions is explored.


2021 ◽  
Vol 53 (4) ◽  
pp. 210409
Author(s):  
Atheer Saad Hashim

A numerical simulation was conducted to study the free convection of Ag/H2O nanofluid between a square cavity with cold walls and an egg shaped cylinder with a hot wall. Utilizing the egg equation, dimensionless governing equations were solved using the Galerkin Finite Element Method (GFEM). In this work, several parameters were studied, i.e. Rayleigh number (103 ≤ Ra ≤ 106), volume fraction (0 ≤ φ ≤ 0.05), position (-0.2 ≤ Y ≤ 0.2), and orientation angle (-90° ≤ γ ≤ 90°). The numerical results are presented as streamline contours, isotherm contours, and local and average Nusselt numbers. Moreover, the results were used to analyze the fluids’ structure, temperature distribution, and heat transfer rate. The numerical results confirmed that the stream intensity value increased with an increase of the Rayleigh number as well as the movement of the cylinder towards the bottom wall for all values of the orientation angle. Variation of the vertical position of the cylinder inside the cavity had a noticeable effect on , which increased by 50% at γ = -90°, and by 58% at γ = -45°. However, at Y = -0.2,  increased by 58% at γ = -45° and decreased by 7% at γ = -90°. The highest heat transfer rate was obtained at high Rayleigh number (Ra = 106), volume fraction (φ = 0.05), negative position (Y = -0.2), and the highest positive orientation angle (γ = 90°).


2018 ◽  
Vol 48 (2) ◽  
pp. 50-71
Author(s):  
M. Muthtamilselvan ◽  
S. Sureshkumar

Abstract This paper is intended to investigate the effects of an inclined magnetic field on the mixed convection flow in a lid-driven porous enclosure filled with nanofluid. Both the left and right vertical walls of the cavity are thermally insulated while the bottom and top horizontal walls are maintained at constant but different temperatures. The governing equations are solved numerically by using finite volume method on a uniformly staggered grid system. The computational results are obtained for various combinations of Richardson number, Darcy number, Hartmann number, inclination angle of magnetic field, and solid volume fraction. It is found that the presence of magnetic field deteriorates the fluid flow, which leads to a significant reduction in the overall heat transfer rate. The inclination angle of magnetic field plays a major role in controlling the magnetic field strength and the overall heat transfer rate is enhanced with the increase of inclination angle of magnetic field. Adding the nanoparticles in the base fluid significantly increases the overall heat transfer rate in the porous medium whether the magnetic field is considered or not.


2017 ◽  
Vol 9 (5) ◽  
pp. 1094-1110
Author(s):  
Lei Wang ◽  
Zhenhua Chai ◽  
Baochang Shi

AbstractIn this paper, the magnetic field effects on natural convection of power-law nanofluids in rectangular enclosures are investigated numerically with the lattice Boltzmann method. The fluid in the cavity is a water-based nanofluid containing Cu nanoparticles and the investigations are carried out for different governing parameters including Hartmann number (0.0≤Ha≤20.0), Rayleigh number (104≤Ra≤106), power-law index (0.5≤n≤1.0), nanopartical volume fraction (0.0≤ϕ≤0.1) and aspect ratio (0.125≤AR≤8.0). The results reveal that the flow oscillations can be suppressed effectively by imposing an external magnetic field and the augmentation of Hartmann number and power-law index generally decreases the heat transfer rate. Additionally, it is observed that the average Nusselt number is increased with the increase of Rayleigh number and nanoparticle volume fraction. Moreover, the present results also indicate that there is a critical value for aspect ratio at which the impact on heat transfer is the most pronounced.


2013 ◽  
Vol 135 (7) ◽  
Author(s):  
A. Raisi ◽  
S. M. Aminossadati ◽  
B. Ghasemi

This technical brief numerically examines the mixed convection heat transfer of a Cu-water nanofluid in a parallel-plate vertical channel that is influenced by a magnetic field. An upward flow of Cu-water nanofluid enters the channel at a relatively low temperature and a uniform velocity. It is found that the magnetic field has dissimilar effects on the heat transfer rate at different Richardson numbers. The increase of solid volume fraction results in an increase of the heat transfer rate especially at low Richardson numbers.


2016 ◽  
Vol 20 (6) ◽  
pp. 2051-2064 ◽  
Author(s):  
Ridha Mebrouk ◽  
Mahfoud Kadja ◽  
Mohamed Lachi ◽  
Stéphane Fohanno

In the present paper a numerical study of natural turbulent convection in a tall cavity filled with nanofluids. The cavity has a heat source embedded on its bottom wall, while the left, right and top walls of the cavity are maintained at a relatively low temperature. The working fluid is a water based nanofluid having three nanoparticle types: alumina, copper and copper oxid. The influence of pertinent parameters such as Rayleigh number, the type of nanofluid and solid volume fraction of nanoparticles on the cooling performance is studied. Steady forms of twodimensional Reynolds-Averaged-Navier-Stokes equations and conservation equations of mass and energy, coupled with the Boussinesq approximation, are solved by the control volume based discretisation method employing the SIMPLE algorithm for pressure-velocity coupling. Turbulence is modeled using the standard k-? model. The Rayleigh number, Ra, is varied from 2.491009 to 2.491011. The volume fractions of nanoparticles were varied in the interval 0??? 6% . Stream lines, isotherms, velocity profiles and Temperature profiles are presented for various combinations of Ra, the type of nanofluid and solid volume fraction of nanoparticles. The results are reported in the form of average Nusselt number on the heated wall. It is shown that for all values of Ra, the average heat transfer rate from the heat source increases almost linearly and monotonically as the solid volume fraction increases. Finally the average heat transfer rate takes on values that decrease according to the ordering Cu, CuO and Al2O3.


Energies ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2807 ◽  
Author(s):  
Hamed Bagheri ◽  
Mohammadali Behrang ◽  
Ehsanolah Assareh ◽  
Mohsen Izadi ◽  
Mikhail A. Sheremet

In the present investigation, the free convection energy transport was studied in a C-shaped tilted chamber with the inclination angle α that was filled with the MWCNT (MultiWall Carbon Nanotubes)-Fe3O4-H2O hybrid nanofluid and it is affected by the magnetic field and thermal flux. The control equations were numerically resolved by the finite element method (FEM). Then, using the artificial neural network (ANN) combined with the particles swarm optimization algorithm (PSO), the Nusselt number was predicted, followed by investigating the effect of parameters including the Rayleigh number (Ra), the Hartmann number (Ha), the nanoparticles concentration (φ), the inclination angle of the chamber (α), and the aspect ratio (AR) on the heat transfer rate. The results showed the high accuracy of the ANN optimized by the PSO algorithm in the prediction of the Nusselt number such that the mean squared error in the ANN model is 0.35, while in the ANN model, it was optimized using the PSO algorithm (ANN-PSO) is 0.22, suggesting the higher accuracy of the latter. It was also found that, among the studied parameters with an effect on the heat transfer rate, the Rayleigh number and aspect ratio have the greatest impact on the thermal transmission intensification. The obtained data also showed that a growth of the Hartmann number illustrates a reduction of the Nusselt number for high Rayleigh numbers and the heat transfer rate is almost constant for low Rayleigh number values.


Sign in / Sign up

Export Citation Format

Share Document