Ambient Temperature Effect on Performance of a Lithium-Ion Polymer Battery Cell for 12-Voltage Applications

2019 ◽  
Author(s):  
Yiqun Liu ◽  
Y. Gene Liao ◽  
Ming-Chia Lai

Abstract Operating temperature has a significant impact on the performance, safety, and cycle lifetime of the lithium-ion batteries. The operating temperature of a battery is the result of the ambient temperature augmented by the heat generated by the battery. This paper presents the empirical investigation of the effect of ambient temperature on the performance of a Lithium-Nickel-Manganese-Cobalt-Oxide based cell with 3.6V nominal voltage and 20Ah capacity. The experiments are carried out in an environment chamber using five controlled temperatures at −20°C, −10°C, 0°C, 20°C, and 50°C, as the ambient temperatures. In each controlled temperature test, a constant current (10A, 20A, and 40A) continuously discharge the cell to a cut-off 2.5V. The cell discharging voltages and usable capacities are the battery performance indicators. The experimental tests show that discharging voltage at 50% DOD and the total discharging time to reach 2.5V (usable capacity) increase as the ambient temperature increases. The modeling and simulation of a battery cell temperature model is built in the Simulink platform. The correlations show that simulated and experimental discharging curves match well in the 0–80% DOD range and the discrepancy is under 7%. The developed simulation model could provide thermal management guidelines for lithium-ion polymer battery applications in 12 voltage SLI, start-stop, and 48 voltage mild hybrid electric vehicles.

Author(s):  
Yiqun Liu ◽  
Y. Gene Liao ◽  
Ming-Chia Lai

An intuitive and comprehensive lithium-ion polymer battery cell model is developed in the Simulink environment. The developed model has capability of transient function in the Thevenin-based model, AC-equivalent function in the impedance-based model, and runtime prediction in the runtime-based model. Several model parameters are determined through five experimental discharging currents (6.67A, 10A, 20A, 30A, and 40A). The model is correlated and validated with other three continuous discharging currents (4A, 15A, and 50A) and two pulse discharges (20A and 30A). The validation indicates a less than 7% discrepancy between model simulation and experiment. The model is currently effective for lithium-metal-oxides polymer battery cell with capacity between 18Ah and 22Ah (20Ah +/− 10%). For other capacity battery cell, the parameters of series resistors need to be adjusted in the model. These parameters can be determined using three to five continuous constant current discharging tests. It is intended to make the developed cell model scalable and accurate in a wider ranges of battery specifications. Expending the developed cell model to a 12 voltage Starting-Lighting-Ignition (SLI) battery used in the start-stop or 48 voltage battery pack for mild hybrid electric vehicle is an example.


Vehicles ◽  
2019 ◽  
Vol 1 (1) ◽  
pp. 127-137 ◽  
Author(s):  
Yiqun Liu ◽  
Y. Gene Liao ◽  
Ming-Chia Lai

Lithium-ion polymer batteries currently are the most popular vehicle onboard electric energy storage systems ranging from the 12 V/24 V starting, lighting, and ignition (SLI) battery to the high-voltage traction battery pack in hybrid and electric vehicles. The operating temperature has a significant impact on the performance, safety, and cycle lifetime of lithium-ion batteries. It is essential to quantify the heat generation and temperature distribution of a battery cell, module, and pack during different operating conditions. In this paper, the transient temperature distributions across a battery module consisting of four series-connected lithium-ion polymer battery cells are measured under various charging and discharging currents. A battery thermal model, correlated with the experimental data, is built in the module-level in the ANSYS/Fluent platform. This validated module thermal model is then extended to a pack thermal model which contains four parallel-connected modules. The temperature distributions on the battery pack model are simulated under 40 A, 60 A, and 80 A constant discharge currents. An air-cool thermal management system is integrated with the battery pack model to ensure the operating temperature and temperature gradient within the optimal range. This paper could provide thermal management design guideline for the lithium-ion polymer battery pack.


2011 ◽  
Vol 13 (6) ◽  
pp. 608-610 ◽  
Author(s):  
V. Yufit ◽  
P. Shearing ◽  
R.W. Hamilton ◽  
P.D. Lee ◽  
M. Wu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document