Compact Design of High-Contact-Ratio Spur Gears

Author(s):  
Tuan H. Nguyen

Abstract This study presents a computer simulation for the dynamic design of compact high-contact-ratio spur gear transmissions. High contact ratio gears have the potential to produce lower dynamic tooth loads and minimum root stress but they can be sensitive to tooth profile errors. The analysis presented in this work was performed by using the NASA gear dynamics code DANST (Dynamic Analysis of Spur Gear Transmissions). In the analysis, the addendum ratio (addendum/diametral pitch) was varied over the range 1.30 to 1.40 to obtain a contact ratio of 2.00 or higher. The constraints of bending stress limit and involute interference provide the main criteria for this investigation. Compact design of high-contact-ratio gears with different gear ratios and pressure angles was investigated. Comparison of compact design between low-contact-ratio and high-contact-ratio gears was conducted. With the same operating parameters, high-contact-ratio gears appear to have much more compact design than low-contact-ratio gears. For compact design of high-contact-ratio gears, a diametral pitch of 6.00 appears to be the best choice for an optimal gear set.

2014 ◽  
Vol 592-594 ◽  
pp. 2292-2296 ◽  
Author(s):  
P. Marimuthu ◽  
G. Muthuveerappan

The aim of this paper is to determine the effect on direct design asymmetric high contact ratio spur gear based on tooth load sharing. A unique Ansys parametric design language code is developed for this study. The load sharing based bending and contact stresses are determined for different drive side contact ratios. In addition to that the location of critical loading point is determined. Because the critical loading point for high contact ratio spur gear not lies on fixed point like normal contact ratio spur gears namely highest point of single tooth contact. In conclusion an increase in drive side contact ratio leads to increase in the load sharing based bending stress and decrease in the contact stress at the critical loading point.


1979 ◽  
Vol 101 (2) ◽  
pp. 268-273 ◽  
Author(s):  
I. Yuruzume ◽  
H. Mizutani ◽  
T. Tsubuku

The problems of involute spur gear noise and transmission errors are studied by meshing m3, 40z spur gears. Five kinds of tooth profile errors, such as convex, concave and wave-like, were formed on the test gear teeth by grinding. The value of each tooth profile error is divided into 3 grades, according to the Gear standards of JIS. Transmission errors of 15 test gears and a master gear were measured by a single flank gear rolling tester with a planetary gear system. Gear noise and strains near tooth fillets were measured by running these test gears on a gear noise testing machine with a power absorbing system, in an anechoic room. This paper presents experimental results and studies of the influence of tooth profile error forms on single flank rolling errors, situation of tooth contacts and gear noise while running.


1982 ◽  
Vol 104 (4) ◽  
pp. 749-757 ◽  
Author(s):  
M. Savage ◽  
J. J. Coy ◽  
D. P. Townsend

The design of a standard gear mesh is treated with the objective of minimizing the gear size for a given ratio, pinion torque, and allowable tooth strength. Scoring, pitting fatigue, bending fatigue, and the kinematic limits of contact ratio and interference are considered. A design space is defined in terms of the number of teeth on the pinion and the diametral pitch. This space is then combined with the objective function of minimum center distance to obtain an optimal design region. This region defines the number of pinion teeth for the most compact design. The number is a function of the gear ratio only. A design example illustrating this procedure is also given.


2004 ◽  
Vol 127 (3) ◽  
pp. 477-484 ◽  
Author(s):  
Kadir Cavdar ◽  
Fatih Karpat ◽  
Fatih C. Babalik

This paper presents a method for the determination of bending stress minimization of involute spur gears. A computer program has been developed to investigate the variation of bending stress and contact ratio depending on the pressure angle on the drive side. Since asymmetric tooth is not standard, the tooth model, which was introduced by DIN 3990/Method C and ISO/TC 60, has been adjusted for asymmetric tooth by the authors. The determination of the tooth form and stress concentration factors for asymmetric tooth has been accomplished for each different parameter (pressure angles, tool radius, rack shift, etc.). The sample results, which were obtained by using a developed computer program, are illustrated with numerical examples.


Author(s):  
A. Ramamohana Rao ◽  
B. Srinivasulu

Abstract Performance of spur gears largely depends on the magnitude and nature of variation of dynamic loads occuring between mating teeth. Variable tooth mesh stiffness is one of the primary sources causing parametric excitations resulting in dynamic loads. The usual method of varying the mesh stiffness to reduce dynamic loads is to use high contact ratio and profile modified gears. In this paper, a new type of tooth design to improve the dynamic performance of spur gears is presented. In this, a through hole is drilled in each tooth in a direction parallel to the gear axis. The diameter of the hole and its position on the tooth centre line are variable. Such a gear is called a hollow gear. Dynamic analysis is carried out for the mesh of hollow pinions mating with solid gears. The results are compared with solid pinions (no holes in teeth) meshing with solid gears. Finite element method is used for the analysis. For estimation of the dynamic load variation in hollow-solid and solid-solid gear meshes, a model incorporating the varying mesh stiffness and damping of gear teeth is used. Governing differential equations are solved using unconditionally stable Newmark-beta algorithm. The dynamic loads obtained are used as an input time varying loads for the determination of dynamic fillet and hole stress response of solid and hollow gear teeth whichever is applicable. Modal superposition technique is used for transient response analysis. The study shows that for the same damping ratio, dynamic loads in hollow-solid meshes are nearly the same as in a solid-solid mesh. In reality, the dynamic loads in a hollow-solid mesh are less than a solid-solid mesh due to its inherent higher material damping.


1981 ◽  
Vol 103 (2) ◽  
pp. 447-459 ◽  
Author(s):  
R. W. Cornell

The magnitude and variation of tooth pair compliance with load position affects the dynamics and loading significantly, and the tooth root stressing per load varies significantly with load position. Therefore, the recently developed time history, interactive, closed form solution for the dynamic tooth loads for both low and high contact ratio spur gears [1] was expanded to include improved and simplified methods for calculating the compliance and stress sensitivity for three involute tooth forms as a function of load position. The compliance analysis is based on Weber [2] and O’Donnell [3] but with an improved fillet/foundation compliance analysis. The stress sensitivity analysis is a modified version of the Heywood method [4] but with an improvement in the magnitude and location of the peak stress in the fillet. These improved compliance and stress sensitivity analyses are presented along with their evaluation using test, finite element, and analytic transformation results, which showed good agreement.


Author(s):  
Nihat Yıldırım ◽  
Hakan I˙s¸c¸i ◽  
Abdullah Akpolat

Aerospace applications require special procedures for component design and manufacturing. Spur gears of different designs, because of their simpler geometries, are used in vital units-transmissions of helicopters and alike aerospace vehicles. In this study, performances of various profile designs of previously researched low and high contact ratio spur gears with some realistic design parameters are studied. Effects of the realistic parameters of variable tooth pair stiffness, relief shape, and adjacent pitch error on Transmission Error (TE), tooth loads and root stresses are presented; composition of these parameters determines the efficiency of the gearbox assembly. Detail of minimization of tooth root stress through optimized/proper design of relief is described. More comprehensive comparison of the gear tooth profile design cases is done to be able to guide aerospace transmission designers for practical applications with realistic parameters for each of the design cases. A preference order is done among the design cases, depending on effect of some design parameters on the results such as tooth loads, tooth root stresses, TE curves and peak-to-peak TE values.


Sign in / Sign up

Export Citation Format

Share Document