Dynamic Response Near Critical Build Heights in Ultrasonic Additive Manufacturing

Author(s):  
Dennis M. Lyle ◽  
James M. Gibert

Abstract Previous ultrasonic additive manufacturing (UAM) models ignore higher-order modes or do not simulate the entire weld cycle when studying the dynamics near critical height-to-width ratios. A multi-modal model was developed to study the dynamics near critical build heights. The cause for the critical height-to-width ratio is dynamic interaction between the substrate and sonotrode. As the build height approaches the critical height-width-ratio, the current model predicts a local maxima in the transverse velocity response directly under the moving load (simulated sonotrode excitation). This is validated by experimental observations from previous studies. However, the current model predicts that as the height is further increased, a maximum in the transverse velocity response occurs at a height-to-width ratio of 1.2 due to resonance of higher-order modes. This result indicates that a single mode-approximation is insufficient to describe the dynamics near critical build heights. In studying the time response for an entire weld cycle (1.5 s), the amplitude of the velocity response in the transverse direction varies greatly. This indicates that assuming a quasi-static or analyzing a short time period in a model excludes potential dynamics during an entire weld cycle (on the order of 1 s).

Author(s):  
James M. Gibert ◽  
Georges M. Fadel ◽  
Mohammed F. Daqaq

Ultrasonic Additive Manufacturing is a solid state manufacturing process that combines ultrasonic welding of layers of thin metal foil with contour milling. Bonding between two foils is accomplished by holding the foils together under pressure and applying high-frequency excitations normal to the pressure direction. The accepted explanation for bonding is that stresses due to both compression and friction stemming from the interfacial motion between the foils result in plasticity and ultimately produce a metallurgical bond. The process however, has been shown to have a critical shortcoming in its operation; namely, the presence of a range of build heights within which bonding cannot be initiated. To better understand the reasons for this anomaly, this paper simplifies the process into a lumped parameter dry friction oscillator and shows that complex stick-slip motions of the build feature near or above its resonance frequency may explain bond degradation. Specifically, it is shown through bifurcation maps obtained for different process parameters that, at the critical build heights, the feature exhibits pure stick motions due to primary resonant interactions between the external excitation and the feature. Furthermore, complex aperiodic responses are observed at build heights above resonance (short features). In such scenarios, bonding cannot be initiated because no or non-uniform interfacial motions occur between the tape and the feature. It is also observed that, once the height of the build feature increases beyond the critical value corresponding to resonance, periodic uniform responses essential for bonding, are recovered. These results corroborates previous experimental findings which demonstrate that bonding can be hard to initiate near or slightly above resonance (at or slightly below a critical height) but can be reinitiated below resonance (above the critical height).


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Alex. S. Jenkins ◽  
Lara San Emeterio Alvarez ◽  
Samh Memshawy ◽  
Paolo Bortolotti ◽  
Vincent Cros ◽  
...  

AbstractNiFe-based vortex spin-torque nano-oscillators (STNO) have been shown to be rich dynamic systems which can operate as efficient frequency generators and detectors, but with a limitation in frequency determined by the gyrotropic frequency, typically sub-GHz. In this report, we present a detailed analysis of the nature of the higher order spin wave modes which exist in the Super High Frequency range (3–30 GHz). This is achieved via micromagnetic simulations and electrical characterisation in magnetic tunnel junctions, both directly via the spin-diode effect and indirectly via the measurement of the coupling with the gyrotropic critical current. The excitation mechanism and spatial profile of the modes are shown to have a complex dependence on the vortex core position. Additionally, the inter-mode coupling between the fundamental gyrotropic mode and the higher order modes is shown to reduce or enhance the effective damping depending upon the sense of propagation of the confined spin wave.


2021 ◽  
Vol 9 ◽  
Author(s):  
Xin Zhang ◽  
Shoufei Gao ◽  
Yingying Wang ◽  
Wei Ding ◽  
Pu Wang

Abstract High-power fiber lasers have experienced a dramatic development over the last decade. Further increasing the output power needs an upscaling of the fiber mode area, while maintaining a single-mode output. Here, we propose an all-solid anti-resonant fiber (ARF) structure, which ensures single-mode operation in broadband by resonantly coupling higher-order modes into the cladding. A series of fibers with core sizes ranging from 40 to 100 μm are proposed exhibiting maximum mode area exceeding 5000 μm2. Numerical simulations show this resonant coupling scheme provides a higher-order mode (mainly TE01, TM01, and HE21) suppression ratio of more than 20 dB, while keeping the fundamental mode loss lower than 1 dB/m. The proposed structure also exhibits high tolerance for core index depression.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4265
Author(s):  
Bobo Li ◽  
Bowen Wang ◽  
Greg Zhu ◽  
Lijuan Zhang ◽  
Bingheng Lu

Aiming at handling the contradiction between power constraint of on-orbit manufacturing and the high energy input requirement of metal additive manufacturing (AM), this paper presents an AM process based on small-power metal fine wire feed, which produces thin-wall structures of height-to-width ratio up to 40 with core-forming power only about 50 W. In this process, thermal resistance was introduced to optimize the gradient parameters which greatly reduces the step effect of the typical AM process, succeeded in the surface roughness (Ra) less than 5 μm, comparable with that obtained by selective laser melting (SLM). After a 10 min electrolyte-plasma process, the roughness of the fabricated specimen was further reduced to 0.4 μm, without defects such as pores and cracks observed. The ultimate tensile strength of the specimens measured about 500 MPa, the relative density was 99.37, and the Vickers hardness was homogeneous. The results show that the proposed laser-Joule wire feed-direct metal deposition process (LJWF-DMD) is a very attractive solution for metal AM of high surface quality parts, particularly suitable for rapid prototyping for on-orbit AM in space.


1996 ◽  
Vol 17 (11) ◽  
pp. 1957-1967 ◽  
Author(s):  
W. M. Shi ◽  
K. F. Tsang ◽  
C. N. Wong ◽  
W. X. Zhang

Sign in / Sign up

Export Citation Format

Share Document