Redesigns of HSOP Package for High Power Consumption Based on the Numerical Thermal Simulation Analysis

Author(s):  
John Chia ◽  
Jinfa Chen

A Heat Slug Outline Package (HSOP) with different design concepts to improve its thermal performance is investigated. The thermal performance of the standard designs of TSSOP usually could not pass the requirements for greater functional integration in wireless frquency and reduction in power consumption, e.g. for a radio frequency (RF) front-end IC’s in silicon its power consumption can be increased about twice when the design frequency increases from 2.0 GHz to 3.5 GHz. The configuration of HSOP28 proposed here is redesigned based on the Thin Shrink Small Outline Package (TSSOP) that is a plastic encapsulated semiconductor device complied with a standard Surface Mount Technology (SMT). In order to accommodate a chip with the same size but double it power consumption, various types of lead frame design for HSOP packages are studies. It is therefore an object of the present study to investigate what will be the maximum thermal improvement of HSOP package compared to the corresponding same size of TSSOP package, which is also related to further reliability issue of this type of IC package, i.e. the thermal fatigue life calculation. Studies presented here are also taken into account the thermal performance of HSOP package associated with different multi-layers PCB designs and the thermal conductivity variations, where the package internal heat conduction as function of board thermal conductivity can be made.

2005 ◽  
Vol 128 (2) ◽  
pp. 203-206 ◽  
Author(s):  
A.-R. A. Khaled

Heat transfer through joint fins is modeled and analyzed analytically in this work. The terminology “joint fin systems” is used to refer to extending surfaces that are exposed to two different convective media from its both ends. It is found that heat transfer through joint fins is maximized at certain critical lengths of each portion (the receiver fin portion which faces the hot side and the sender fin portion that faces the cold side of the convective media). The critical length of each portion of joint fins is increased as the convection coefficient of the other fin portion increases. At a certain value of the thermal conductivity of the sender fin portion, the critical length for the receiver fin portion may be reduced while heat transfer is maximized. This value depends on the convection coefficient for both fin portions. Thermal performance of joint fins is increased as both thermal conductivity of the sender fin portion or its convection coefficient increases. This work shows that the design of machine components such as bolts, screws, and others can be improved to achieve favorable heat transfer characteristics in addition to its main functions such as rigid fixation properties.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1120
Author(s):  
Virginija Skurkyte-Papieviene ◽  
Ausra Abraitiene ◽  
Audrone Sankauskaite ◽  
Vitalija Rubeziene ◽  
Julija Baltusnikaite-Guzaitiene

Phase changing materials (PCMs) microcapsules MPCM32D, consisting of a polymeric melamine-formaldehyde (MF) resin shell surrounding a paraffin core (melting point: 30–32 °C), have been modified by introducing thermally conductive additives on their outer shell surface. As additives, multiwall carbon nanotubes (MWCNTs) and poly (3,4-ethylenedioxyoxythiophene) poly (styrene sulphonate) (PEDOT: PSS) were used in different parts by weight (1 wt.%, 5 wt.%, and 10 wt.%). The main aim of this modification—to enhance the thermal performance of the microencapsulated PCMs intended for textile applications. The morphologic analysis of the newly formed coating of MWCNTs or PEDOT: PSS microcapsules shell was observed by SEM. The heat storage and release capacity were evaluated by changing microcapsules MPCM32D shell modification. In order to evaluate the influence of the modified MF outer shell on the thermal properties of paraffin PCM, a thermal conductivity coefficient (λ) of these unmodified and shell-modified microcapsules was also measured by the comparative method. Based on the identified optimal parameters of the thermal performance of the tested PCM microcapsules, a 3D warp-knitted spacer fabric from PET was treated with a composition containing 5 wt.% MWCNTs or 5 wt.% PEDOT: PSS shell-modified microcapsules MPCM32D and acrylic resin binder. To assess the dynamic thermal behaviour of the treated fabric samples, an IR heating source and IR camera were used. The fabric with 5 wt.% MWCNTs or 5 wt.% PEDOT: PSS in shell-modified paraffin microcapsules MPCM32D revealed much faster heating and significantly slower cooling compared to the fabric treated with the unmodified ones. The thermal conductivity of the investigated fabric samples with modified microcapsules MPCM32D has been improved in comparison to the fabric samples with unmodified ones. That confirms the positive influence of using thermally conductive enhancing additives for the heat transfer rate within the textile sample containing these modified paraffin PCM microcapsules.


Author(s):  
Kenneth J. Kelly ◽  
Gregory C. Pacifico ◽  
Michael Penev ◽  
Andreas Vlahinos

The National Renewable Energy Laboratory (NREL) and Plug Power Inc. have been working together to develop fuel cell modeling processes to rapidly assess critical design parameters and evaluate the effects of variation on performance. This paper describes a methodology for investigating key design parameters affecting the thermal performance of a high temperature, polybenzimidazole (PBI)-based fuel cell stack. Nonuniform temperature distributions within the fuel cell stack may cause degraded performance, induce thermo-mechanical stresses, and be a source of reduced stack durability. The three-dimensional (3-D) model developed for this project includes coupled thermal/flow finite element analysis (FEA) of a multi-cell stack integrated with an electrochemical model to determine internal heat generation rates. Sensitivity and optimization algorithms were used to examine the design and derive the best choice of the design parameters. Initial results showed how classic design-of-experiment (DOE) techniques integrated with the model were used to define a response surface and perform sensitivity studies on heat generation rates, fluid flow, bipolar plate channel geometry, fluid properties, and plate thermal material properties. Probabilistic design methods were used to assess the robustness of the design in response to variations in load conditions. The thermal model was also used to develop an alternative coolant flow-path design that yields improved thermal performance. Results from this analysis were recently incorporated into the latest Plug Power coolant flow-path design. This paper presents an evaluation of the effect of variation on key design parameters such as coolant and gas flow rates and addresses uncertainty in material thermal properties.


Sign in / Sign up

Export Citation Format

Share Document