Enhanced Leak Detection Risk Model Development

Author(s):  
Lorna Harron ◽  
Rick Barlow ◽  
Ted Farquhar

Increasing concerns and attention to pipeline safety have engaged pipeline companies and regulatory agencies to extend their approaches to pipeline integrity. The implementation of High Consequence Areas (HCAs) has in particular had an impact on the development of integrity management protocols (IMPs) for pipelines. These IMPs can require that a risk based assessment of integrity issues be applied to specific HCA risk factors. This paper addresses the development of an operational risk assessment approach for pipeline leak detection requirements for HCAs. A detailed risk assessment algorithm that includes 25 risk variables and 28 consequence variables was developed for application to all HCA areas. The significant likelihood and consequence factors were chosen through discussions with the Leak Detection Risk Assessment Model Working Group and subject matter experts throughout Enbridge. The leak detection algorithm focuses on sections of pipe from flow meter to flow meter, as these are the locations that impact the leak detection system used by Enbridge. Each section of pipe is evaluated for likelihood, consequence and risk. When a high or medium risk area has been identified, an evaluation of potential Preventive and Mitigative (P&M) measures will be undertaken. A P & M Matrix has been developed to identify potential mitigation strategies to be considered for higher risk variables, called risk drivers, in the model. The matrix has been developed to identify potential risk mitigation strategies to consider for each variable used in the HCA Leak Detection Risk Assessment. The purpose of the matrix is to guide the user to consider actions identified for variables that drive the risk for the particular location. Upon review of the matrix, the user determines feasibility of the risk mitigation strategies being considered to identify an action. The paper will describe the consultative process that was used to workshop the development of this algorithm. Included in this description is how the process addressed various methods of leak detection across a wide variety of pipelines. The paper closes with “development challenges” and future steps in applying operation risk assessment techniques to mainline leak detection risk management.

Author(s):  
Anna Hopper

This paper develops a risk assessment framework for airport development projects. It discusses the major types of inherent development risk, including political risk, environmental risk, financial risk, airline risk, forecast risk, and regulatory or operational risk, and it offers suggestions for risk mitigation strategies. Furthermore, it identifies and analyzes relative risk determinants, which affect the magnitude and type of risk that development projects will likely face. These include the presence of a dominant airline, the airport’s rate structure, the airport’s ownership and operating structure, local demand, and geopolitical events. These factors and their interconnected relationships are illustrated through case studies of relevant airport development projects.


Author(s):  
Ryan Phillips ◽  
Tony King ◽  
Jim Bruce

The Pipeline Ice Risk Assessment & Mitigation JIP (PIRAM) developed a set of engineering models and design procedures for implementation into industry best practices for risk mitigation and protection of pipeline infrastructure from ice keel loading. The models established the pipeline mechanical behaviour in response to ice keel load events, and assessed engineering concepts for protection and risk mitigation strategies. Improved methodologies for contact frequency and ice keel loads determination formed part of the integrated model. This paper presents an overview of this multiyear program and examples of the application of the models in pipeline burial depth assessment in pressure ridge ice gouged seabeds.


Author(s):  
Robert E. Chapman ◽  
Jeffrey T. Fong ◽  
David T. Butry ◽  
Douglas S. Thomas ◽  
James J. Filliben ◽  
...  

This paper is built around ASTM E 2506, Standard Guide for Developing a Cost-Effective Risk Mitigation Plan for New and Existing Constructed Facilities. E 2506 establishes a three-step protocol—perform risk assessment, specify combinations of risk mitigation strategies for evaluation, and perform economic evaluation—to insure that the decision maker is provided the requisite information to choose the most cost effective combination of risk mitigation strategies. Because decisions associated with low-probability, high-consequence events involve uncertainty both in terms of appropriate evaluation procedures and event-related measures of likelihood and consequence, NIST developed a Risk Mitigation Toolkit. This paper uses (a) a data center undergoing renovation for improved security, and (b) a PVP-related failure event to illustrate how to perform the E 2506 three-step protocol with particular emphasis on the third step—perform economic evaluation. The third step is built around the Cost-Effectiveness Tool for Capital Asset Protection (CET), which was developed by NIST. Version 4.0 of CET is used to analyze the security- or failure-related event with a focus on consequence estimation and consequence assessment via Monte Carlo techniques. CET 4.0 includes detailed analysis and reporting features designed to identify key cost drivers, measure their impacts, and deliver estimated consequence parameters with uncertainty bounds. Significance of this economics-based intelligence (EI) tool is presented and discussed for security- or failure-consequence estimation to risk assessment of failure of critical structures or components.


Author(s):  
Agnes Ann Feemster ◽  
Melissa Augustino ◽  
Rosemary Duncan ◽  
Anand Khandoobhai ◽  
Meghan Rowcliffe

Abstract Disclaimer In an effort to expedite the publication of articles related to the COVID-19 pandemic, AJHP is posting these manuscripts online as soon as possible after acceptance. Accepted manuscripts have been peer-reviewed and copyedited, but are posted online before technical formatting and author proofing. These manuscripts are not the final version of record and will be replaced with the final article (formatted per AJHP style and proofed by the authors) at a later time. Purpose The purpose of this study was to identify potential failure points in a new chemotherapy preparation technology and to implement changes that prevent or minimize the consequences of those failures before they occur using the failure modes and effects analysis (FMEA) approach. Methods An FMEA was conducted by a team of medication safety pharmacists, oncology pharmacists and technicians, leadership from informatics, investigational drug, and medication safety services, and representatives from the technology vendor. Failure modes were scored using both Risk Priority Number (RPN) and Risk Hazard Index (RHI) scores. Results The chemotherapy preparation workflow was defined in a 41-step process with 16 failure modes. The RPN and RHI scores were identical for each failure mode because all failure modes were considered detectable. Five failure modes, all attributable to user error, were deemed to pose the highest risk. Mitigation strategies and system changes were identified for 2 failure modes, with subsequent system modifications resulting in reduced risk. Conclusion The FMEA was a useful tool for risk mitigation and workflow optimization prior to implementation of an intravenous compounding technology. The process of conducting this study served as a collaborative and proactive approach to reducing the potential for medication errors upon adoption of new technology into the chemotherapy preparation process.


Author(s):  
Leigh McCue

Abstract The purpose of this work is to develop a computationally efficient model of viral spread that can be utilized to better understand influences of stochastic factors on a large-scale system - such as the air traffic network. A particle-based model of passengers and seats aboard a single-cabin 737-800 is developed for use as a demonstration of concept on tracking the propagation of a virus through the aircraft's passenger compartment over multiple flights. The model is sufficiently computationally efficient so as to be viable for Monte Carlo simulation to capture various stochastic effects, such as number of passengers, number of initially sick passengers, seating locations of passengers, and baseline health of each passenger. The computational tool is then exercised in demonstration for assessing risk mitigation of intervention strategies, such as passenger-driven cleaning of seating environments and elimination of middle seating.


Sign in / Sign up

Export Citation Format

Share Document