Strain-Based Pipeline Design in Harsh Environments Using Large Diameter High Strain Line Pipes

Author(s):  
Nobuhisa Suzuki ◽  
Takekazu Arakawa ◽  
Andrey Arabey

This paper outlines the draft recommendations to be issued by Gazprom that deals with the advanced strain-based pipeline design to ensure pipeline integrity in harsh environments using stress-strain curve controlled high-strain line pipe (SSLP). The draft recommendations have been provided to employ the new design concept to some future pipeline projects. The analytical solution was adopted in the draft as the solution is useful to improve strain capacity by controlling the longitudinal tensile properties without increasing wall thickness. The concept was validated through full-scale bending test using X70, 1220 mm SSLPs. FEA clarified that the strain capacity in compression or bending of X70, 1420 mm SSLP, 9.8 MPa, is high compared to that of the standard line pipe (STLP). The strain demand required for the SSLP pipeline in the harsh environments shall be small compared to that for the STPL pipeline. The SSLP pipeline shall be beneficial for ensuring the pipeline integrity in the harsh environments.

Author(s):  
Hisakazu Tajika ◽  
Takahiro Sakimoto ◽  
Tsunehisa Handa ◽  
Rinsei Ikeda ◽  
Joe Kondo

Recently high grade pipeline project have been planned in hostile environment like landslide in mountain area, liquefaction in reclaimed land or the frost heave in Polar Regions. Geohazards bring large scale ground deformation and effect on the varied pipeline to cause large deformation. Therefore, strain capacity is important for the pipeline and strain based design is also needed to keep gas transportation project in safe. High grade steel pipe for linepipe tends to have higher yield to tensile (Y/T) ratio and it has been investigated that the lower Y/T ratio of the material improves strain capacity in buckling and tensile limit state. In onshore pipeline project, pipe usually transported in 12 or 18m each and jointed in the field. Girth weld (GW) is indispensable so strength matching of girth weld towards pipe body is important. In this study strain capacity of Grade X70 high strain pipes with size of 36″ OD and 23mm WT was investigated with two types of experiments, which are full scale pipe bending tests and curved wide plate tests. The length of the specimen of full scale bending tests were approximately 8m and girth weld was made in the middle of joint length. A fixed internal pressure was applied during the bending test. Actual pipe situation in work was simulated and both circumferential and longitudinal stress occurred in this test. Test pipes were cut and welded, GTAW in first two layer and then finished by GMAW. In one pipe, YS-TS over-matching girth weld (OVM) joint was prepared considering the pipe body grade. For the other pipe, intentionally under-matching girth weld (UDM) joint was prepared. After the girth welding, elliptical EDM notch were installed in the GW HAZ as simulated weld defect. In both pipe bending tests, the buckling occurred in the pipe body at approximately 300mm apart from the GW and after that, deformation concentrated to buckling wrinkle. Test pipe breaking locations were different in the two tests. In OVM, tensile rupture occurred in pipe body on the backside of buckling wrinkle. In UDM, tensile rupture occurred from notch in the HAZ. In CWP test, breaking location was the HAZ notch. There were significant differences in CTOD growth in HAZ notch in these tests.


Author(s):  
Brian D. Newbury ◽  
Martin W. Hukle ◽  
Mark D. Crawford ◽  
Joshua Sleigh ◽  
Steven A. Altstadt ◽  
...  

Standard allowable stress-based pipeline designs (strain demand ≤ 0.5%) are now giving way to more complex strain-based designs (strain demand higher than 0.5%) as the locations of future pipelines move into regions of increased strain demand. The increase in required levels of strain demand are attributed to seismic activity, soil movement, soil liquefaction, frost heave, thaw settlement, ice scour or a combination thereof. Pipelines in high strain demand regions are typically limited by the strain capacity of the girth weld. As strain-based pipeline design has matured, it has become evident that specific material properties (both weld metal and line pipe), defect size, defect location, misalignment, and operating pressure each affect the strain capacity of the pipeline. This paper reviews proposed design and testing methodologies for the qualification of strain-based design welding procedures. These methods have been applied in the development and qualification of welding procedures for the construction of pipelines subject to longitudinal tensile strains in excess of 2%. Strain-based design requires considerably more effort than traditional design in terms of girth weld qualification and testing. To ensure adequate girth weld strain capacity for strain-based design the testing includes large scale and full-scale pressurized testing for design validation.


Author(s):  
Nobuhisa Suzuki ◽  
Hidetaka Watanabe ◽  
Toshiyuki Mayumi ◽  
Hiroyuki Horikawa

Excellent workability of the stress-strain curve controlled high strain line pipe on cold bending with a bending angle of 10 degrees is presented. The high-strain line pipe has a round-house type s-s curve with the stress ratio σ2.0/σ1.0 of 1.030, where σ1.0 and σ2.0 are 1.0% and 2.0% yield stress, respectively. A standard yield-plateau type line pipe was also employed for comparison. FEA was conducted to investigate the cold bending behaviors of X65, 24″ line pipe. The longitudinal strain induced in the high-strain pipe at peak load and unloaded steps are small compared to those in the standard pipe. Effects of residual strain on local buckling behaviors of the high-strain cold bends are investigated. The effect of residual strain on the strain capacity of cold bend subjected to closing and opening mode bending is small when the cold bend is not pressurized. FEA tends to overestimate the strain capacity in bending when the bend is pressurized. However FEA well predicts the locations of the shell wrinkle of the pressurized bend subjected to opening mode bending when residual strain is taken into account. Seismic integrity of the 24″ high-strain cold bend in a lateral spreading zone is demonstrated.


Author(s):  
Hisakazu Tajika ◽  
Takahiro Sakimoto ◽  
Tsunehisa Handa ◽  
Satoshi Igi ◽  
Rinsei Ikeda ◽  
...  

Recently high grade pipeline project have been planned in hostile environment like landslide in mountain area, liquefaction in reclaimed land or the frost heave in Polar Regions. Geohazards bring large scale ground deformation and effect on the varied pipeline to cause large deformation. Therefore, strain capacity is important for the pipeline and strain based design is also needed to keep gas transportation project in safe. High grade steel pipe for linepipe tends to have higher yield to tensile (Y/T) ratio and it has been investigated that the lower Y/T ratio of the material improves strain capacity in buckling and tensile limit state. In onshore pipeline project, pipe usually transported in 12 or 18m each and jointed in the field. Girth weld (GW) is indispensable so strength matching of girth weld towards pipe body is important. In this study strain capacity of Grade X70 high strain pipe with size of 36” OD and 23mm WT was investigated with two types of experiments. One was a pipe bending test with whole pipe. The length of the specimen was approximately 8m and GW was made in the middle of joint length. A fixed internal pressure was applied during the bending test. Actual pipe situation in work was simulated and both circumferential and longitudinal stress occurred in this test. The other test was curved wide plate (CWP) test. In both tests, test pipes were cut and welded using GTAW in the first two layers and GMAW for the subsequent passes. Welding wire of TG-S62 and MG-S58P were used for GTAW and GMAW respectively to achieve over-matching girth weld considering the pipe body strength. Elliptical EDM notch was installed in the GW HAZ as simulated weld defect. In pipe bending test, buckling occurred at the intrados at 300 mm apart from the GW. 2D average compressive strain at buckling was 3.59% and this high compressive strain was considered to derive from the high strain capacity of this pipes. After the buckling, deformation concentrated to the buckling wrinkle. Test pipe broke at 35.5 degrees of pipe end rotation and the location was in base metal at the extrados opposite to the buckling wrinkle. The HAZ notch opened and CTOD was 1.44 mm and the global strain in 2D length average strain was 7.8%. In CWP test, tensile strain simply got large and pipe finally broke at global strain of 9.6% and CTOD of 15 mm. The break location was the HAZ notch. There was a significant difference in CTOD growth in HAZ between two test types. Conditions and factors that effect to these differences are argued in this paper.


2004 ◽  
Vol 2004.1 (0) ◽  
pp. 195-196
Author(s):  
Akihiro HOJO ◽  
Akiyosi CHATANI ◽  
Hiroshi TACHIYA

Author(s):  
Kensuke Nagai ◽  
Yasuhiro Shinohara ◽  
Shinya Sakamoto ◽  
Eiji Tsuru ◽  
Hitoshi Asahi ◽  
...  

To suppress the appearance of Lu¨ders strain and to decrease yield to tensile strength ratio in the L-direction (longitudinal direction), as well as the C-direction (circumferential direction), have been more important for strain-based design. In this study, conventional UOE and ERW pipes were examined in terms of tensile properties in both directions. In the case of UOE pipes, yield point was clearly observed on the stress-strain curve in the C-direction. However, stress-strain curves in the L-direction showed the round-house type. This difference became prominent after heat treatment for the anti-corrosion. Namely, clear Lu¨ders strain appeared in the C-direction at a lower aging temperature compared with that in the L-direction. On the other hand, contrasting results were obtained in the case for ERW pipes. Thus far, it’s been thought that the difference between UOE and ERW pipe was caused by the direction of final strain during the pipe forming process. There are also differences in the occurrence of Lu¨ders strain between each grade. A stress-strain curve maintained the round-house type in X100 grade pipe after the heat treatment at 240°C for five minutes; however, X70 grade pipe showed the stress-strain curve in the L-direction with Lu¨ders strain after the heat treatment at the same temperature.


2013 ◽  
Vol 767 ◽  
pp. 144-149 ◽  
Author(s):  
Tei Saburi ◽  
Shiro Kubota ◽  
Yuji Wada ◽  
Tatsuya Kumaki ◽  
Masatake Yoshida

In this study, a high strain rate test method of a steel plate under blast loading from high explosive was designed and was conducted by a combined experimental/numerical approach to facilitate the estimation process for the dynamic stress-strain curve under practical strain rate conditions. The steel plate was subjected to a blast load, which was generated by Composition C4 explosive and the dynamic deformation of the plate was observed with a high-speed video camera. Time-deformation relations were acquired by image analysis. A numerical simulation for the dynamic behaviors of the plate identical to the experimental condition was conducted using a coupling analysis of finite element method (FEM) and discrete particle method (DPM). Explosives were modeled by discrete particles and the steel plate and other materials were modeled by finite element. The blast load on the plate was described fluid-structure interaction (FSI) between DPM and FEM. As inverse analysis scheme to estimate dynamic stress-strain curve, an evaluation using a quasistatic data was conducted. In addition, two types of approximations for stress-strain curve were assumed and optimized by least square method. One is a 2-piece approximation, and was optimized by least squares method using a yield stress and a tangent modulus as parameters. The other is a continuous piecewise linear approximation, in which a stress-strain curve was divided into some segments based on experimental time-deformation relation, and was sequentially optimized using youngs modulus or yield stress as parameter. The results showed that the piecewise approximation can gives reasonably agreement with SS curve obtained from the experiment.


Metals ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 115 ◽  
Author(s):  
Amin Azimi ◽  
Gbadebo Moses Owolabi ◽  
Hamid Fallahdoost ◽  
Nikhil Kumar ◽  
Grant Warner

The present work deals with studies on the dynamic behavior of ultrafine grained AA2519 alloy synthesized via cryogenic forging (CF) and room temperature forging (RTF) techniques. A split-Hopkinson pressure bar was used to perform high strain rate tests on the processed samples and the microstructures of the samples were characterized before and after impact tests. Electron backscatter diffraction (EBSD) maps demonstrated a significant grain size refinement from ~740 nm to ~250 nm as a result of cryogenic plastic deformation showing higher dislocation densities and stored strains in the CF sample when compared to the RTF sample. This microstructure modification caused the increase of dynamic flow stress in this alloy. In addition, the aluminum matrix of the CF alloy is more densely populated with fragmented particles than the RTF alloy due to the heavier plastic deformation applied to the cryogenically forged alloy. The results obtained from the stress–strain curve for the RTF sample showed intense thermomechanical instabilities in the RTF sample which led to a severe thermal softening and the subsequent sharp drop in the flow stress. However, no significant decrease was observed in the stress–strain curve of the CF alloys with ultrafine grains which means that thermal softening would probably not be the most effective failure mechanism. Furthermore, higher level of sensitivity of CF alloys to strain rates was observed which is ascribed to transition of rate-controlling plastic deformation mechanisms. In the post-mortem microstructure investigation, deformed and transformed adiabatic shear bands (ASBs) were identified on the RTF alloy when the strain rate is over 4000 s−1 at which it had experienced a significant thermal softening. On the other hand, circular path and aligned split arcs are the various shapes of the deformed ASB seen at no earlier than 4500 s−1 in the CF alloys. This is associated with the crack failure caused by grain boundary sliding.


Sign in / Sign up

Export Citation Format

Share Document