Seismic Integrity of High-Strain Cold Bend in Lateral Spreading Zone

Author(s):  
Nobuhisa Suzuki ◽  
Hidetaka Watanabe ◽  
Toshiyuki Mayumi ◽  
Hiroyuki Horikawa

Excellent workability of the stress-strain curve controlled high strain line pipe on cold bending with a bending angle of 10 degrees is presented. The high-strain line pipe has a round-house type s-s curve with the stress ratio σ2.0/σ1.0 of 1.030, where σ1.0 and σ2.0 are 1.0% and 2.0% yield stress, respectively. A standard yield-plateau type line pipe was also employed for comparison. FEA was conducted to investigate the cold bending behaviors of X65, 24″ line pipe. The longitudinal strain induced in the high-strain pipe at peak load and unloaded steps are small compared to those in the standard pipe. Effects of residual strain on local buckling behaviors of the high-strain cold bends are investigated. The effect of residual strain on the strain capacity of cold bend subjected to closing and opening mode bending is small when the cold bend is not pressurized. FEA tends to overestimate the strain capacity in bending when the bend is pressurized. However FEA well predicts the locations of the shell wrinkle of the pressurized bend subjected to opening mode bending when residual strain is taken into account. Seismic integrity of the 24″ high-strain cold bend in a lateral spreading zone is demonstrated.

Author(s):  
Nobuhisa Suzuki ◽  
Takekazu Arakawa ◽  
Andrey Arabey

This paper outlines the draft recommendations to be issued by Gazprom that deals with the advanced strain-based pipeline design to ensure pipeline integrity in harsh environments using stress-strain curve controlled high-strain line pipe (SSLP). The draft recommendations have been provided to employ the new design concept to some future pipeline projects. The analytical solution was adopted in the draft as the solution is useful to improve strain capacity by controlling the longitudinal tensile properties without increasing wall thickness. The concept was validated through full-scale bending test using X70, 1220 mm SSLPs. FEA clarified that the strain capacity in compression or bending of X70, 1420 mm SSLP, 9.8 MPa, is high compared to that of the standard line pipe (STLP). The strain demand required for the SSLP pipeline in the harsh environments shall be small compared to that for the STPL pipeline. The SSLP pipeline shall be beneficial for ensuring the pipeline integrity in the harsh environments.


Author(s):  
Hisakazu Tajika ◽  
Takahiro Sakimoto ◽  
Tsunehisa Handa ◽  
Rinsei Ikeda ◽  
Joe Kondo

Recently high grade pipeline project have been planned in hostile environment like landslide in mountain area, liquefaction in reclaimed land or the frost heave in Polar Regions. Geohazards bring large scale ground deformation and effect on the varied pipeline to cause large deformation. Therefore, strain capacity is important for the pipeline and strain based design is also needed to keep gas transportation project in safe. High grade steel pipe for linepipe tends to have higher yield to tensile (Y/T) ratio and it has been investigated that the lower Y/T ratio of the material improves strain capacity in buckling and tensile limit state. In onshore pipeline project, pipe usually transported in 12 or 18m each and jointed in the field. Girth weld (GW) is indispensable so strength matching of girth weld towards pipe body is important. In this study strain capacity of Grade X70 high strain pipes with size of 36″ OD and 23mm WT was investigated with two types of experiments, which are full scale pipe bending tests and curved wide plate tests. The length of the specimen of full scale bending tests were approximately 8m and girth weld was made in the middle of joint length. A fixed internal pressure was applied during the bending test. Actual pipe situation in work was simulated and both circumferential and longitudinal stress occurred in this test. Test pipes were cut and welded, GTAW in first two layer and then finished by GMAW. In one pipe, YS-TS over-matching girth weld (OVM) joint was prepared considering the pipe body grade. For the other pipe, intentionally under-matching girth weld (UDM) joint was prepared. After the girth welding, elliptical EDM notch were installed in the GW HAZ as simulated weld defect. In both pipe bending tests, the buckling occurred in the pipe body at approximately 300mm apart from the GW and after that, deformation concentrated to buckling wrinkle. Test pipe breaking locations were different in the two tests. In OVM, tensile rupture occurred in pipe body on the backside of buckling wrinkle. In UDM, tensile rupture occurred from notch in the HAZ. In CWP test, breaking location was the HAZ notch. There were significant differences in CTOD growth in HAZ notch in these tests.


Author(s):  
Brian D. Newbury ◽  
Martin W. Hukle ◽  
Mark D. Crawford ◽  
Joshua Sleigh ◽  
Steven A. Altstadt ◽  
...  

Standard allowable stress-based pipeline designs (strain demand ≤ 0.5%) are now giving way to more complex strain-based designs (strain demand higher than 0.5%) as the locations of future pipelines move into regions of increased strain demand. The increase in required levels of strain demand are attributed to seismic activity, soil movement, soil liquefaction, frost heave, thaw settlement, ice scour or a combination thereof. Pipelines in high strain demand regions are typically limited by the strain capacity of the girth weld. As strain-based pipeline design has matured, it has become evident that specific material properties (both weld metal and line pipe), defect size, defect location, misalignment, and operating pressure each affect the strain capacity of the pipeline. This paper reviews proposed design and testing methodologies for the qualification of strain-based design welding procedures. These methods have been applied in the development and qualification of welding procedures for the construction of pipelines subject to longitudinal tensile strains in excess of 2%. Strain-based design requires considerably more effort than traditional design in terms of girth weld qualification and testing. To ensure adequate girth weld strain capacity for strain-based design the testing includes large scale and full-scale pressurized testing for design validation.


Author(s):  
Woo Yeon Cho ◽  
Dong-Han Seo ◽  
Jang-Yong Yoo

In compressive strain capacity, high deformable linepipe steel, which is able to delay or evade local buckling, is needed. The objective of this paper is to present the results of an experimental and a finite-element investigation into the behavior of pipes subjected to bending behavior of aged API-X100 linepipe. The comparative behavior of aged and non aged specimens was recorded. The Results from numerical models are checked against the observations in the testing program and the ability of numerical solutions to predict pipe compressive strain capacity, curvatures, and buckling modes is improved. A finite-element model was developed using the finite-element simulator ABAQUS to predict the local buckling behavior of pipes. The input stress-strain relations of the material were discussed using the indexed yield point elongations. The comparison between the results of yield point elongation type material and those of material of smooth stress-strain curve near yield was done.


Author(s):  
Satoshi Igi ◽  
Joe Kondo ◽  
Nobuhisa Suzuki ◽  
Joe Zhou ◽  
Da-Ming Duan

In recent years, several natural gas pipeline projects have been planned for permafrost regions. Pipelines laid in such areas are subjected to large plastic deformation as a result of ground movement due to repeated thawing and freezing of the frozen ground. Likewise, in pipeline design methods, research on application of strain-based design as an alternative to the conventional stress-based design method has begun. Much effort has been devoted to the application of strain-based design to high strength linepipe materials. In order to verify the applicability of high-strain X100 linepipe to long distance transmission, a large-scale X100 pipeline was constructed using linepipe with an OD of 42″ and wall thickness of 14.3mm. This paper presents the results of experiments and Finite Element Analysis (FEA) focusing on the strain capacity of high-strain X100 linepipes. The critical compressive strain of X100 high-strain linepipes is discussed based on the results of FEA taking into account geometric imperfections. The critical tensile strain for high-strain X100 pipelines is obtained based on a curved wide plate (CWP) tensile test using specimens taken from girth welded joints. Specifically, the effect of external coating treatment on the strain capacity of X100 high-strain linepipe is investigated. The strain capacity of the 42″ X100 pipeline is considered by comparing the tensile strain limit obtained from girth weld fracture and critical compressive strain which occurs in local buckling under pure bending deformation.


Author(s):  
Hisakazu Tajika ◽  
Takahiro Sakimoto ◽  
Tsunehisa Handa ◽  
Satoshi Igi ◽  
Rinsei Ikeda ◽  
...  

Recently high grade pipeline project have been planned in hostile environment like landslide in mountain area, liquefaction in reclaimed land or the frost heave in Polar Regions. Geohazards bring large scale ground deformation and effect on the varied pipeline to cause large deformation. Therefore, strain capacity is important for the pipeline and strain based design is also needed to keep gas transportation project in safe. High grade steel pipe for linepipe tends to have higher yield to tensile (Y/T) ratio and it has been investigated that the lower Y/T ratio of the material improves strain capacity in buckling and tensile limit state. In onshore pipeline project, pipe usually transported in 12 or 18m each and jointed in the field. Girth weld (GW) is indispensable so strength matching of girth weld towards pipe body is important. In this study strain capacity of Grade X70 high strain pipe with size of 36” OD and 23mm WT was investigated with two types of experiments. One was a pipe bending test with whole pipe. The length of the specimen was approximately 8m and GW was made in the middle of joint length. A fixed internal pressure was applied during the bending test. Actual pipe situation in work was simulated and both circumferential and longitudinal stress occurred in this test. The other test was curved wide plate (CWP) test. In both tests, test pipes were cut and welded using GTAW in the first two layers and GMAW for the subsequent passes. Welding wire of TG-S62 and MG-S58P were used for GTAW and GMAW respectively to achieve over-matching girth weld considering the pipe body strength. Elliptical EDM notch was installed in the GW HAZ as simulated weld defect. In pipe bending test, buckling occurred at the intrados at 300 mm apart from the GW. 2D average compressive strain at buckling was 3.59% and this high compressive strain was considered to derive from the high strain capacity of this pipes. After the buckling, deformation concentrated to the buckling wrinkle. Test pipe broke at 35.5 degrees of pipe end rotation and the location was in base metal at the extrados opposite to the buckling wrinkle. The HAZ notch opened and CTOD was 1.44 mm and the global strain in 2D length average strain was 7.8%. In CWP test, tensile strain simply got large and pipe finally broke at global strain of 9.6% and CTOD of 15 mm. The break location was the HAZ notch. There was a significant difference in CTOD growth in HAZ between two test types. Conditions and factors that effect to these differences are argued in this paper.


Author(s):  
Atsushi Suganuma ◽  
Junpei Kono ◽  
Masataka Hayashiguchi

This paper discusses the effects of local deformation, dent, and strain hardening properties on strain capacity in compression of a line pipe. Compression tests were conducted using two pipes with the nominal diameter of 400mm. These pipes had roundhouse type stress-strain curve, and correspond to L290 grade in Spec 5L of API (American Petroleum Institute) standards. One pipe was a plain pipe without dent, The other was a dented pipe. The depth of the dent was about 3% of the diameter. The test results explain that the strain capacity can be reduced by 25% due to the effect of dent. A series of finite element analyses were conducted to investigate the compression behaviors. The strain capacity in compression was defined as the longitudinal critical remote strain whose strain distribution was free from the effects of a dent. At first, that finite element analyses were verified that they could reproduce the results of compression tests. Next, the size of dent were changed on that finite element analyses model, some different case were analyzed in order to investigate the changes of the strain capacity in compression. The strain capacity, the longitudinal critical remote strain, decreased to about a half in case of 3%-depth dent, compared with a plain pipe. Seismic integrity of the pipeline with a dent is discussed in accordance with the seismic design guideline issued by Japan Gas Association. In case of the strong earthquake, “Ground Motion Level-1”, the dented gas pipeline is safe, even if the depth of the dent is 10% of the diameter. In case of the maximum earthquake, “Ground Motion Level-2”, the gas pipeline might buckle longitudinally in soft ground.


Author(s):  
Hisakazu Tajika ◽  
Satoshi Igi ◽  
Takahiro Sakimoto ◽  
Shigeru Endo ◽  
Seishi Tsuyama ◽  
...  

This paper presents the results of experimental studies focused on the strain capacity of X80 linepipe. A full-scale bending tests of X80 grade, 48″ high-strain linepipes pressurized to 60% SMYS were conducted to investigate the compressive strain limit and tensile strain limit. The tensile properties Y/T ratios and uniform elongation of the pipes had variety. Three of four pipes are high strain pipes and these Y/T ratios are intentionally low with manufacturing method. One of these high-strain pipe was girth welded in its longitudinal center to investigate the effect of girth weld to strain capacity. The other was set as a conventional pipe that have higher Y/T ratio to make comparative study. The compressive strain limit focused on the critical strain at the formation of local buckling on the compression side of bending. After pipe reaches its endurable maximum moment, one large developed wrinkle and some small wrinkles on the pipe surface during bending deformation were captured relatively well from observation and strain distribution measurement. The tensile strain limit is discussed from the viewpoint of competition of two fracture phenomena: ductile crack initiation/propagation from an artificial notch at the HAZ of the girth weld, and strain concentration and rupture in the base material at the tension (opposite) side of the local buckling position.


2021 ◽  
Vol 2 (1) ◽  
pp. 174-194
Author(s):  
Luís Bernardo ◽  
Saffana Sadieh

In previous studies, a smeared truss model based on a refinement of the rotating-angle softened truss model (RA-STM) was proposed to predict the full response of structural concrete panel elements under in-plane monotonic loading. This model, called the “efficient RA-STM procedure”, was validated against the experimental results of reinforced and prestressed concrete panels, steel fiber concrete panels, and reinforced concrete panels externally strengthened with fiber-reinforced polymers. The model incorporates equilibrium and compatibility equations, as well as appropriate smeared constitutive laws of the materials. Besides, it incorporates an efficient algorithm for the calculation procedure to compute the solution points without using the classical trial-and-error technique, providing high numerical efficiency and stability. In this study, the efficient RA-STM procedure is adapted and checked against some experimental data related to reinforced concrete (RC) panels tested under in-plane cyclic shear until failure and found in the literature. Being a monotonic model, the predictions from the model are compared with the experimental envelopes of the hysteretic shear stress–shear strain loops. It is shown that the predictions for the shape (at least until the peak load is reached) and for key shear stresses (namely, cracking, yielding, and maximum shear stresses) of the envelope shear stress–shear strain curves are in reasonably good agreement with the experimental ones. From the obtained results, the efficient RA-STM procedure can be considered as a reliable model to predict some important features of the response of RC panels under cyclic shear, at least for a precheck analysis or predesign.


Sign in / Sign up

Export Citation Format

Share Document