Modified West Jefferson Burst Test for Assessment of Brittle Fracture Arrest in Thick-Wall TMCP Line-Pipe Steel With High Charpy Energy

Author(s):  
S. Igi ◽  
T. Sakimoto ◽  
J. Kondo ◽  
Y. Hioe ◽  
G. Wilkowski

Three partial gas pipe burst tests were conducted to assess the brittle-to-ductile transition temperature and brittle fracture arrestability of a heavy-walled TMCP line-pipe steel. This steel had a very high Charpy energy (400 J) which is typical of many modern line-pipe steels. In standard pressed-notch DWTT specimen tests this material exhibited abnormal fracture appearance (ductile fracture from the pressed notch prior to brittle fracture starting) that occurs with many high Charpy energy steels. Such behavior gives an invalid test by API RP 5L3, which makes the transition temperature difficult to determine. The first burst test was conducted in a manner that is typical of a traditional West Jefferson (partial gas vessel) burst tests. The crack was initiated in the center of the cooled vessel (with a partial air gap), but an unusual result occurred. In this test a ductile fracture just barely started from each crack tip, but one of the endcaps blew off. The pipe rocketed into the wall of a containment building. The opposite endcap impacted the wall of the building and brittle fractures started there with one coming back to the center of the vessel. The implication from this test was that perhaps initiation of the brittle fracture in the base metal gives different results than if the initial crack came from a brittle location. The second burst test used a modified West-Jefferson Burst Test procedure. The modification involved cutting a short length of pipe at the center of the vessel and rotating the seam weld to the line of crack propagation. The HAZ of the axial seam weld had a higher dynamic transition temperature. The initiation flaw was across one of the center girth welds so that one side of the initial through-wall crack had the crack tip in the base metal while the other side initiated in the seam weld HAZ. On the base metal side, the crack had about 220 mm of crack growth before reaching steady-state shear area, i.e., the shear area gradually decreased as the fracture speed was increasing. On the other side, a brittle fracture was started in the HAZ as expected, and once it crossed the other central girth weld into the base metal, the fracture immediately transformed to a lower shear area percent. These results along with those from the first burst test suggest that the DWTT specimen should have a brittle weld metal in the starter notch region to ensure the arrestability of the material. The final burst test was at a warmer temperature. There was a short length of crack propagation with higher shear area percent, which quickly turned to ductile fracture and arrested. In addition various modified DWTTs were conducted and results were analyzed using an alternative brittle fracture arrest criterion to predict pipe brittle fracture arrestability.

Author(s):  
Toshihiko Amano ◽  
Satoshi Igi ◽  
Takahiro Sakimoto ◽  
Takehiro Inoue ◽  
Shuji Aihara

This paper describes the results of pressure vessel fracture test which called West Jefferson and/or partial gas burst testing using Grade API X65 linepipe steel with high Charpy energy that exhibits inverse facture in the Drop Weight Tear Test (DWTT). A series of pressure vessel fracture tests which is as part of an ongoing effort by the High-strength Line Pipe committee (HLP) of the Iron and Steel Institute of Japan (ISIJ) was carried out at low temperature in order to investigate brittle-to-ductile transition behavior and to compare to DWTT fracture behavior. Two different materials on Fracture Appearance Transition Temperature (FATT) property were used in these tests. One is −60 degree C and the other is −25 to −30 degree C which is defined as 85 % shear area fraction (SA) in the standard pressed notch DWTT (PN-DWTT). The dimensions of the test pipes were 24inches (609.6 mm) in outside diameter (OD), 19.1 mm in wall thickness (WT). In each test, the test pipe is cooled by using liquid nitrogen in the cooling baths. Two cooling baths are set up separately on the two sides of the test vessel, making it possible to obtain fracture behaviors under two different test temperatures in one burst test. The test vessel was also instrumented with pressure transducers, thermocouples and timing wires to obtain the pressure at the fracture onset, temperature and crack propagation velocity, respectively. Some informative observations to discuss appropriate evaluation method for material resistance to brittle facture propagation for high toughness linepipe materials are obtained in the test. When the pipe burst test temperatures are higher than the PN-DWTT transition temperature, ductile cracks were initiated from the initial notch and propagated with short distance in ductile manner. When the pipe burst test temperatures were lower than the PN-DWTT transition temperature, brittle cracks were initiated from the initial notch and propagated through cooling bath. However, the initiated ductile crack at lower than the transition temperature was not changed to brittle manner. This means inverse facture occurred in the PN-DWTT is a particular problem caused by the API DWTT testing method. Furthermore, results for the pipes tested indicated that inverse facture occurred in PN-DWTT at the temperature above the 85 % FATT may not affect the arrestability against the brittle fracture propagation and it is closely related with the location of brittle fracture initiation origin in the fracture appearance of PN-DWTT.


Author(s):  
G. Wilkowski ◽  
D-J. Shim ◽  
Y. Hioe ◽  
S. Kalyanam ◽  
M. Uddin

Current line-pipe steels have significantly higher Charpy upper-shelf energy than older steels. Many newer line-pipe steels have Charpy upper-shelf energy in the 300 to 500J range, while older line-pipe steels (pre-1970) had values between 30 and 60J. With this increased Charpy energy comes two different and important aspects of how to predict the brittle fracture arrestability for these new line-pipe steels. The first aspect of concern is that the very high Charpy energy in modern line-pipe steels frequently produces invalid results in the standard pressed-notch DWTT specimen. Various modified DWTT specimens have been used in an attempt to address the deficiencies seen in the PN-DWTT procedure. In examining fracture surfaces of various modified DWTT samples, it has been found that using the steady-state fracture regions with similitude to pipe burst test (regions with constant shear lips) rather than the entire API fracture area, results collapse to one shear area versus temperature curve for all the various DWTT specimens tested. Results for several different materials will be shown. The difficulty with this fracture surface evaluation is that frequently the standard pressed-notch DWTT only gives valid transitional fracture data up to about 20-percent shear area, and then suddenly goes to 100-percent shear area. The second aspect is that with the much higher Charpy energy, the pipe does not need as much shear area to arrest a brittle fracture. Some analyses of past pipe burst tests have been recently shown and some additional cases will be presented. This new brittle fracture arrest criterion means that one does not necessarily have to specify 85-percent shear area in the DWTT all the time, but the shear area needed for brittle fracture arrest depends on the pipeline design conditions (diameter, hoop stress) and the Charpy upper-shelf energy of the steel. Sensitivity studies and examples will be shown.


Author(s):  
Y. Hioe ◽  
G. Wilkowski ◽  
M. Fishman ◽  
M. Myers

In this paper the results will be presented for burst tests from a Joint Industry Project (JIP) on “Validation of Drop Weight Tear Test (DWTT) Methods for Brittle Fracture Control in Modern Line-Pipe Steels by Burst Testing”. The JIP members for this project were: JFE Steel as founding member, ArcelorMittal, CNPC, Dillinger, NSSMC, POSCO, Tenaris, and Tokyo Gas. Two modified West Jefferson (partial gas) pipe burst tests were conducted to assess the brittle-to-ductile transition temperature and brittle fracture arrestability of two 48-inch diameter by 24.6-mm thick X65 TMCP line-pipe steels. These steels had very high Charpy energy (350J and 400J) which is typical of many modern line-pipe steels. In standard pressed-notch DWTT specimen tests, these materials exhibited abnormal fracture appearance (ductile fracture from the pressed notch prior to brittle fracture starting) that occurs with many high Charpy energy steels. Such behavior makes the transition temperature difficult to determine. The shear area values versus temperature results for these two burst tests compared to various modified DWTT specimens are shown. Different rating methodologies; DNV, API, and a Best-Estimate of steady-state fracture propagation appearance were evaluated.


Author(s):  
D. Rudland ◽  
D.-J. Shim ◽  
G. M. Wilkowski ◽  
S. Kawaguchi ◽  
N. Hagiwara ◽  
...  

The ductile fracture resistance of newer line pipe steels is of concern for high grade/strength steels and higher-pressure pipeline designs. Although there have been several attempts to make improved ductile fracture arrest models, the model that is still used most frequently is the Battelle Two-Curve Method (TCM). This analysis incorporates the gas-decompression behavior with the fracture toughness of the pipe material to predict the minimum Charpy energy required for crack arrest. For this analysis, the influence of the backfill is lumped into one empirically developed “soil” coefficient which is not specific to soil type, density or strength. No attempt has been made to quantify the effects of soil depth, type, total density or strength on the fracture speeds of propagating cracks in line pipe steels. In this paper, results from small-scale and large-scale burst tests with well-controlled backfill conditions are presented and analyzed to determine the effects of soil depth and cohesiveness on the fracture speeds. Combining this data with the past full-scale burst data used in generating the original backfill coefficient provides additional insight into the effects of the soil properties on the fracture speeds and the arrest of running ductile fractures in line pipe materials.


Author(s):  
G. Demofonti ◽  
G. Junker ◽  
V. Pistone ◽  
Gerd Junker ◽  
Valentino Pistone ◽  
...  

The applicability of Drop Weight Tear Test specimen to evaluate the ductile to brittle transition temperature of thick wall pipes (30 mm and 40 mm wall thickness) has been investigated by comparing West Jefferson tests at different temperatures and laboratory data. The traditional API pressed notch specimen has been used with full and reduced thickness, together with chevron notch and weld notch starters. The different crack initiation methods have been examined with the goal of providing an easier test specimen, with reduced fracture energy. The 85% shear area transition temperature indicated by the different test specimen show a reasonable similarity, but the higher costs of preparation of the alternative notch geometries limit their adequacy in substituting the traditional pressed notch specimen. Good agreement has been found between standard DWTT specimen and full-scale test transition temperature. The results of this program together with literature data, confirm the validity of the DWTT specimen to measure the ductile to brittle transition temperature for thermomechanical rolled linepipe steels of thickness up to 40 mm. The reduced thickness specimens conservatively predicted full scale behaviour.


Author(s):  
Igor Pyshmintsev ◽  
Alexey Gervasyev ◽  
Victor Carretero Olalla ◽  
Roumen Petrov ◽  
Andrey Arabey

The microstructure and fracture behavior of the base metal of different X80 steel line pipe lots from several pipeline projects were analyzed. The resistance of the pipes to ductile fracture propagation was determined by the full-scale burst tests. The high intensity of fracture surface separation (secondary brittle cracks parallel to the rolling plane of the plate) appeared to be the main factor reducing the specific fracture energy of ductile crack propagation. A method for quantitative analysis of microstructure allowing estimation of the steel’s tendency to form separations is proposed. The procedure is based on the EBSD data processing and results in Cleavage Morphology Clustering (CMC) parameter evaluation which correlates with full-scale and laboratory mechanical test results. Two special laboratory mechanical test types utilizing SENT and Charpy test concepts for prediction of ductile fracture arrest/propagation in a pipe were developed and included into Gazprom specifications.


Author(s):  
Sundaresa Subramanian ◽  
Xiaoping Ma ◽  
Xuelin Wang ◽  
Chengjia Shang ◽  
Xiaobing Zhang ◽  
...  

Microstructural engineering to obtain 100% shear area in DWTT at low temperature requires target parameters to suppress brittle fracture. In-depth characterization of benchmarked steels has confirmed that %age shear area is decreased by high number density of ultra-fine precipitates (<10nm) that contribute to precipitation strengthening, high intensity of rotated cube texture and coarse brittle constituents like M/A or carbides. The control of these parameters by nano-scale precipitate engineering of TiN-NbC was covered in a previous presentation in IPC 2016 [1]. The present paper focuses on crystallographic variants selection that controls the density and dispersion of high angle boundaries, which arrest microcracks to suppress brittle fracture, thereby increasing %age shear area in DWTT at low temperature. Studies on crystallographic variants selection in single undeformed austenite grain have clarified crystallographic variants configuration which gives rise to high angle boundaries is influenced by hardenability parameters, i.e., alloying, cooling rate and austenite grain size. The profound effect of carbon and solute niobium on density and dispersion of high angle boundaries in CGHAZ is demonstrated by analyzing EBSD data to reconstruct the shear transformation of undeformed austenite using K-S relationship. Moreover, pancaking of austenite influences crystallographic variants through Sv factor and dislocation density. Experimental results on nano-scale TiN-NbC composite precipitate engineered steel confirm that adequate solute niobium (>0.03wt%) is retained in the matrix, which is aided by the suppression of delayed strain induced precipitation of ultra-fine precipitates of NbC. The hardenability from solute niobium is found to be adequate to give high density of high angle boundaries to give about 95% shear area in DWTT at −40°C in 32 mm gage K-60 plate and 100% shear area in 16.3 mm X-90 strip. Both steels were processed by nano-scale precipitate engineering of TiN-NbC composite to control size and uniformity of distribution of austenite grains before pancaking.


Author(s):  
G. Wilkowski ◽  
D. Rudland ◽  
D. Rider ◽  
P. Mincer ◽  
W. Sloterdijk

This paper presents a procedure to determine the lowest temperature that a ductile fracture will initiate in old (or new) pipe that behaves in a brittle manner (by Charpy testing). Over the last decade, much work has been done to assess constraint effects on the crack-driving force for specimens and cracks in pipes. The material’s transition temperature where the fracture process changes from ductile tearing to cleavage fracture at crack initiation is affected by the constraint conditions, but is a material property that cannot be determined analytically. This paper presents a methodology to account for constraint effects to predict the lowest temperature where ductile fracture initiation occurs and relates that temperature back to Charpy impact data for X60 and lower grades, particularly for older vintage linepipe materials. The method involves a series of transition temperature shifts to account for thickness effects, strain-rate effects, and constraint effects to give a master curve of transition temperatures from Charpy data to through-wall-cracked or surface-cracked pipes (with various surface-crack depth values) under quasi-static loading. These transition temperature shifts were based on hundreds of pipe tests and thousands of specimen tests over several decades of work by numerous investigators. Conducting tests on 1927 and 1948 vintage line-pipe steels subsequently validated this method. In addition, data were developed on the 1927 vintage pipe material to assess the effect of the bluntness of a corrosion flaw on the lowest temperature where ductile fracture will still occur under quasi-static loading. An addition transition temperature shift occurs as a function of the bluntness of the flaw.


Author(s):  
S. Chapuliot ◽  
S. Marie ◽  
T. H. N’Guyen ◽  
C. Niclaeys ◽  
S. Degalleix

This paper deals with the brittle fracture risk evaluation for a C-Mn weld joint in the upper shelf of the brittle to ductile fracture transition temperature range, with the main objective to develop a predictive criteria, able to demonstrate the complete absence of brittle fracture risk. The question was investigated in the frame of two PhDs. In the first one (V. Le Corre PhD), a critical stress based fracture criterion was proposed, qualibrated and validated against experimental data for the base metal. This work gave promising results with, in particular, the capability of the model to predict non fracture for a cracked pipe submitted to bending at low temperature. In the second one (T.H. N’Guyen PhD), the model was calibrated and applied to the weld joint. The work showed that material heterogeneity of the weld metal must be taken into account in order to obtain a good representation of the fracture behavior. Again, the model was confronted to different specimen geometries and showed its capability to reasonably predict constraint and geometrical effects on the brittle fracture appearance risk. The paper gives a synthesis of the main results obtained during these two PhDs, questions still to be solved and perspectives for the continuation of this work.


Sign in / Sign up

Export Citation Format

Share Document