Electron Exposure Measurements of Candidate Solar Sail Materials

Author(s):  
Tesia L. Albarado ◽  
William A. Hollerman ◽  
David Edwards ◽  
Whitney Hubbs ◽  
Charles Semmel

Solar sailing is a unique form of propulsion where a spacecraft gains momentum from incident photons. Since sails are not limited by reaction mass, they provide continual acceleration, reduced only by the lifetime of the lightweight film in the space environment and the distance to the Sun. Practical solar sails can expand the number of possible missions that are difficult by conventional means. The National Aeronautics and Space Administration’s Marshall Space Flight Center (MSFC) is concentrating research into the utilization of ultra lightweight materials for spacecraft propulsion. Solar sails are generally composed of a highly reflective metallic front layer, a thin polymeric substrate, and occasionally a highly emissive back surface. The Space Environmental Effects Team at MSFC is actively characterizing candidate sails to evaluate the thermo-optical and mechanical properties after exposure to electrons. This paper will discuss the preliminary results of this research.

2005 ◽  
Vol 127 (1) ◽  
pp. 125-130 ◽  
Author(s):  
Tesia L. Albarado ◽  
William A. Hollerman ◽  
David Edwards ◽  
Whitney Hubbs ◽  
Charles Semmel

Solar sailing is a unique form of propulsion where a spacecraft gains momentum from incident photons. Since sails are not limited by reaction mass, they provide continual acceleration, reduced only by the lifetime of the lightweight film in the space environment and the distance to the Sun. Practical solar sails can expand the number of possible missions that are difficult by conventional means. The National Aeronautics and Space Administration’s Marshall Space Flight Center (MSFC) is concentrating research into the utilization of ultra lightweight materials for spacecraft propulsion. Solar sails are generally composed of a highly reflective metallic front layer, a thin polymeric substrate, and occasionally a highly emissive back surface. The Space Environmental Effects Team at MSFC is actively characterizing candidate sails to evaluate the thermo-optical and mechanical properties after exposure to electrons. This paper will discuss the preliminary results of this research.


2011 ◽  
Vol 4 (1) ◽  
pp. 26-44 ◽  
Author(s):  
Geoffrey G. Wawrzyniak ◽  
Kathleen C. Howell

Solar sailing is an enabling technology for many mission applications. One potential application is the use of a sail as a communications relay for a base at the lunar south pole. A survey of the design space for a solar sail spacecraft that orbits in view of the lunar south pole at all times demonstrates that trajectory options are available for sails with characteristic acceleration values of 1.3 mm/s or higher. Although the current sail technology is presently not at this level, this survey reveals the minimum acceleration values that are required for sail technology to facilitate the lunar south pole application. This information is also useful for potential hybrid solar-sail-low-thrust designs. Other critical metrics for mission design and trajectory selection are also examined, such as body torques that are required to articulate the vehicle orientation, sail pitch angles throughout the orbit, and trajectory characteristics that would impact the design of the lunar base. This analysis and the techniques that support it supply an understanding of the design space for solar sails and their trajectories in the Earth-Moon system.


Author(s):  
Ni Li ◽  
Salla Kim ◽  
Jason Lin ◽  
Benjamin De La Torre ◽  
Manhong Wong ◽  
...  

Abstract Solar sailing has been increasingly considered for future space missions as an alternative method of propulsion, since it uses radiation pressure exerted by sunlight on a large mirrored surface for thrust and it does not require propellants such as chemicals or compressed gasses. For decades, single solar sail designs and deployment mechanisms have been studied and implemented in several CubeSats with the purpose of propulsion or deorbiting. Recently, a distributed four sail design has been proposed. The distributed four sails would have the potential to not only provide the spacecraft with propulsion force for space travel, but also control the attitude of the spacecraft by the coordinated motion of the four sails. Considering the large dimensions of the sails, it is necessary for the solar sails to be effectively stowed before launch and then deployed in a controlled manner in space. In this paper, the mechanical design of a deployment system that can stow and deploy four independent triangular solar sails with the ability to rotate after deployment will be presented. To demonstrate the effectiveness and the feasibility of the design, a prototype has been developed and validated through theoretical analysis and experimental tests.


Author(s):  
Loredana Santo ◽  
Denise Bellisario ◽  
Giovanni Matteo Tedde ◽  
Fabrizio Quadrini

Shape memory polymers (SMP) and composites (SMPC) may be used for many applications in Space, from self-deployable structures (such as solar sails, panels, shields, booms and antennas), to grabbing systems for Space debris removal, up to new-concept actuators for telescope mirror tuning. Experiments on the International Space Station are necessary for testing prototypes in relevant environment, above all for the absence of gravity which affects deployment of slender structures but also to evaluate the aging effects of the Space environment. In fact, several aging mechanisms are possible, from polymer cracking to cross-linking and erosion, and different behaviors are expected as well, from consolidating the temporary shape to composite degradation. Evaluating the possibility of shape recovery because of sun exposure is another interesting point. In this study, a possible experiment on the ISS is shown with the aim of evaluating the aging effect of Space on material performances. The sample structure is described as well as the testing strategy.


Aerospace ◽  
2019 ◽  
Vol 6 (7) ◽  
pp. 78 ◽  
Author(s):  
Gianluigi Bovesecchi ◽  
Sandra Corasaniti ◽  
Girolamo Costanza ◽  
Maria Elisa Tata

This work deals with the feasibility and reliability about the use of shape memory alloys (SMAs) as mechanical actuators for solar sail self-deployment instead of heavy and bulky mechanical booms. Solar sails exploit radiation pressure a as propulsion system for the exploration of the solar system. Sunlight is used to propel space vehicles by reflecting solar photons from a large and light-weight material, so that no propellant is required for primary propulsion. In this work, different small-scale solar sail prototypes (SSP) were studied, manufactured, and tested for bending and in three different environmental conditions to simulate as much as possible the real operating conditions where the solar sails work. Kapton is the most suitable material for sail production and, in the space missions till now, activated booms as deployment systems have always been used. In the present work for the activation of the SMA elements some visible lamps have been employed to simulate the solar radiation and time-temperature diagrams have been acquired for different sail geometries and environmental conditions. Heat transfer mechanisms have been discussed and the minimum distance from the sun allowing the full self-deployment of the sail have also been calculated.


2009 ◽  
Vol 44 (7) ◽  
pp. 859-869 ◽  
Author(s):  
Roman Ya. Kezerashvili ◽  
Gregory L. Matloff

Author(s):  
Ni Li ◽  
Paolo Arguelles ◽  
Kevin Chaput ◽  
Stephen L. Kenan ◽  
Salla Kim ◽  
...  

Solar sailing is a new satellite propulsion technology using radiation pressure exerted by sunlight on a large mirrored surface. Since it does not need propellants, it is increasingly being considered by both the European Space Agency and the National Aeronautics and Space Administration for future science missions. An attitude control system is essential for a sail craft to maintain a desired orientation. IKAROS, launched in 2010, practically proved the possibility of using a solar sail as a propulsion system. However, it also showed the current sail orientation system could change the attitude very slowly, about 1 degree per day. In contrast to the existing single solar sail design, a new distributed four-sail configuration is proposed in this paper and the coordinated motion of the four sails is used to control the attitude pointing of a satellite. The feasibility and efficiency of this proposed design were assessed and concluded that it is possible to steer a CubeSat up to 1 degree in 60 seconds for either the roll or pitch axes.


2014 ◽  
Vol 590 ◽  
pp. 371-375
Author(s):  
Ximena Celia Méndez Cubillos ◽  
Rute Cardoso Drebes

The research and curiosity about outer space had been always constant. Looking for others planets, ways, civilizations wherever the exploration of the space will be a thing which the human desire. The challenge here for several years was the obtaining energy sufficient for the application of the missions. So, presently the major objective in the missions is offer more autonomy to the spacecrafts and consequently to lower the cost of the missions. Solar Sails have long been envisaged as an enabling technology because is a promising low-cost option for space exploration for it uses for propulsion an abundant resource in space: solar radiation. In this paper a simple model of solar sail is shown and studied your performance of Control System.


2014 ◽  
Vol 629 ◽  
pp. 291-297 ◽  
Author(s):  
Harijono Djojodihardjo ◽  
Ali Yousefian

Solar sailing has been an attractive concept and possibly an alternative mean of space propulsion for decades to come since solar sail spacecrafts can generate thrust without requiring any propellant. While the resulting acceleration is small, the continuous thrust would lead to high speed.  The present work serves to demonstrate the potential of solar sail by analyzing the dynamics of a spacecraft utilizing solar sail and by carrying out a parametric study for an interplanetary mission exemplified by specific trajectory to Mars.


Sign in / Sign up

Export Citation Format

Share Document