Numerical Study on the Effects of Linear Protrusion on Flow-Induced Carriage Excitation Force in Hard Disk Drives

Author(s):  
Shinji Koganezawa ◽  
Shotaro Tsuda ◽  
Hiroshi Tani ◽  
Renguo Lu ◽  
Norio Tagawa

The positioning accuracy of magnetic heads need to be improved to increase the recording capacity of hard disk drives. In our previous study, the experimental results confirmed that the head positioning error could be decreased by attaching linear protrusions on the leading edge of the carriage arms. However, the mechanism underlying the phenomenon has not been elucidated. In the current research, we evaluated the effect of leading-edge protrusions on the flow-induced carriage excitation force using the finite element (FE) method analysis and the Hilbert-Huang transform (HHT). We prepared two carriage-arm FE models, with and without linear protrusions, on the leading edges of the arm, and performed the FE analyses. Subsequently, we conducted a frequency analysis by applying the HHT to the simulated torque-disturbance time series of each FE model and the results were later compared. Our results show that the leading-edge protrusions were found to decrease the mean velocity between the arm and the disk, thereby decreasing the vorticity fluctuation in the arm hole, and to decrease the fluctuations in pressure on the outer sidewall of the carriage arm around the coil support.

2019 ◽  
Vol 26 (1) ◽  
pp. 33-47
Author(s):  
Shinji Koganezawa ◽  
Shotaro Tsuda ◽  
Hiroshi Tani ◽  
Renguo Lu ◽  
Norio Tagawa

2013 ◽  
Vol 49 (6) ◽  
pp. 2738-2743 ◽  
Author(s):  
Takenori Atsumi ◽  
Shigeo Nakamura ◽  
Masaru Furukawa ◽  
Irizo Naniwa ◽  
Junguo Xu

2006 ◽  
Vol 129 (1) ◽  
pp. 161-170 ◽  
Author(s):  
Jia-Yang Juang ◽  
David B. Bogy ◽  
C. Singh Bhatia

To achieve the areal density goal in hard disk drives of 1Tbit∕in.2 the minimum physical spacing or flying height (FH) between the read/write element and disk must be reduced to ∼2nm. A brief review of several FH adjustment schemes is first presented and discussed. Previous research showed that the actuation efficiency (defined as the ratio of the FH reduction to the stroke) was low due to the significant air bearing coupling. In this paper, an air bearing surface design, Slider B, for a FH control slider with a piezoelectric nanoactuator is proposed to achieve virtually 100% efficiency and to increase dynamics stability by minimizing the nanoscale adhesion forces. A numerical study was conducted to investigate both the static and dynamic performances of the Slider B, such as uniformity of gap FH with near-zero roll over the entire disk, ultrahigh roll stiffness and damping, low nanoscale adhesion forces, uniform FH track-seeking motion, dynamic load/unload, and FH modulation. Slider B was found to exhibit an overall enhancement in performance, stability, and reliability in ultrahigh density magnetic recording.


2005 ◽  
Vol 10 (4) ◽  
pp. 378-384 ◽  
Author(s):  
T. Atsumi ◽  
T. Arisaka ◽  
T. Shimizu ◽  
H. Masuda

Author(s):  
Zhi Chen ◽  
Prateek Shah ◽  
Roberto Horowitz

Abstract The recent rapid growth in the cloud storage industry has strongly increased the demand for high-capacity hard disk drives (HDDs). Increasing the areal density brings new challenges to the high-accuracy head-positioning control in the next generation HDD development. Triple-stage-actuator (TSA) system is one of the emerging technologies that can achieve higher bandwidth than that of a dual-stage-actuator (DSA) system and improve the track-following performance. In this paper, we focus on the track-following controller design for TSA system with one voice coil motor (VCM) and two piezoelectric (PZT) actuators. Two types of mixed H2/Hinf synthesis methodologies based on model-based optimization and data-driven optimization are proposed to design the track-following controller for the TSA system. The TSA system can increase the bandwidth of the servo system and decrease the sensitivity to disturbances at the low-frequency range. While increasing the stroke limitation and the resonance frequency of the micro-actuator, the 3sigma the position error signals (PES) is reduced. The data-driven controller can achieve comparable head-positioning accuracy to the model-based controller when it converges to a local optimal solution. The simulation results show the feasibility and effectiveness of the TSA systems with a tertiary PZT actuator. We also analyze the effects of stroke limitations and resonance frequencies of the second/third-stage PZT actuators on the head-positioning accuracy. The results might provide a guideline for the TSA mechanical design.


2009 ◽  
Vol 3 (3) ◽  
pp. 277-285 ◽  
Author(s):  
Takenori Atsumi ◽  

A Hard Disk Drive (HDD) is an inexpensive mass-production product, but the head-positioning control systems of HDDs require nanometer-scale positioning performance. Therefore, we have studied head-positioning control systems of HDD using designs which integrate mechanical and control systems to improve their control performance while curbing cost increases. In this paper, we introduce “disturbance suppression in high-frequency ranges through phase stable design for high-order mechanical resonances” and “high servo-bandwidth design through mode shape design of mechanical resonance” as examples of techniques that have been developed and are easily applied to products.


Sign in / Sign up

Export Citation Format

Share Document