Battery Storage of Propulsion-Energy for Locomotives

Author(s):  
Michael E. Iden

Significant technical, regulatory and media attention has recently been given to the use of electrical storage batteries onboard a line-haul (long-distance) locomotive or “energy storage tender” (coupled adjacent to a locomotive) as a means of improving railroad fuel efficiency and reducing freight locomotive exhaust emissions. The extent to which electrical energy stored onboard could supplement or replace diesel generated power has yet to be quantified or proven. There are significant technical design, maintainability, logistical and safety challenges to making this technology commonplace, especially for over-the-road (line-haul) freight trains. The use of electrical batteries to provide some amount of point-source fuel- and/or emissions-free locomotive power is not a new concept. Recent claims that onboard storage of locomotive propulsion energy is “new locomotive technology” are unfounded. The world’s first all-battery-powered locomotive was built in 1838 only 34 years after the world’s first steam locomotive operated. A total of 126 identifiable locomotives using onboard batteries to store propulsion energy have been built and operated to some extent in the United States (US) since 1920. Almost all were low-power switching locomotives and none are currently in revenue freight service. Two high-horsepower line-haul experimental engineering test locomotives with an experimental battery design and regenerative dynamic braking have been built (in 2004 and 2007) but very little revenue service testing has occurred. This paper reviews propulsion battery-equipped locomotives over the past 95 years in the US, and discusses future options and possibilities including the technical and logistical challenges to such propulsion. Capturing dynamic braking energy (developed by locomotive traction motors during deceleration or downhill operation) could be a source of onboard battery recharging, but will require significant additional locomotive control system development work to achieve practicality. New battery technologies are being developed but none are yet practical for large-scale locomotive applications. Retrofitting of large amounts of onboard battery storage on existing (or even future) diesel-electric locomotives will be limited by onboard space constraints. The development and use of energy storage “tenders” will bring complications to locomotive and train operations to make effective use (if commercialized) practical and safe. This paper is also intended to provide technical background and clarity for various regulatory agencies regarding battery energy storage technologies for future locomotive propulsion.

2020 ◽  
Vol 6 (3) ◽  
Author(s):  
Matthew A. Arth

Affordable, reliable battery energy storage has long been the holy grail of the electric grid. From avoiding expensive transmission build-out to smoothing out fluctuations inherent to wind and solar resource output, batteries hold the promise of providing the solution to an ever more intermittent and distributed grid. Across the United States and particularly in Texas, that futuristic vision is beginning to approach reality as battery costs decline and favorable regulatory policy is implemented. This Article addresses the current state of battery energy storage system development and notes recent contributory policy developments at both the national and state level.


2021 ◽  
Author(s):  
Mirai Ohara ◽  
A. Shahul Hameed ◽  
Kei Kubota ◽  
Akihiro Katogi ◽  
Kuniko Chihara ◽  
...  

K-ion batteries (KIBs) are promising for large-scale electrical energy storage owing to the abundant resources and the electrochemical specificity of potassium. Among the positive electrode materials for KIBs, vanadium-based polyanionic...


2018 ◽  
Vol 57 (1) ◽  
pp. 64-72 ◽  
Author(s):  
T Yuvaraja ◽  
KA Ramesh Kumar

The electric power system is undergoing important changes and updates nowadays, particularly on a generation and transmission level. Initially, the move towards a distributed generation in distinction to the present centralized one implies a major assimilation of energy from undeleted supply and electricity storage systems. Advanced power physics interfacing systems are expected to play a key role within the development of such modern governable and economical large-scale grids and associated infrastructures. Throughout the last era, a worldwide analysis and development interest has been impressed within the field of segmental structure conversion; thanks to the well-known offered blessings over typical solutions within the medium and high voltage and power range. Within the context of battery energy storage systems, the segmental structure conversion device family exhibits a further attraction, i.e., the aptitude of embedding such storage parts in an exceedingly split manner, given the existence of many submodules operative at considerably lower voltages. This study deals with many technical challenges related to segmental structure converters and their development with battery energy storage parts to boost load sharing system.


2020 ◽  
Author(s):  
Junting Yu ◽  
Tianshou Zhao ◽  
Ding Pan

<div>Aqueous organic redox flow batteries have many appealing properties in the application of large-scale energy storage. The large chemical tunability of organic electrolytes shows great potential to improve the performance of flow batteries. Computational studies at the quantum-mechanics level are very useful to guide experiments, but in previous studies explicit water interactions and thermodynamic effects were ignored. Here, we applied the computational electrochemistry method based on ab initio molecular dynamics to calculate redox potentials of quinones and their derivatives. The calculated results are in excellent agreement with experimental data. We mixed side chains to tune their reduction potentials, and found that solvation interactions and entropy effects play a significant role in side-chain engineering. Based on our calculations, we proposed several high-performance negative and positive electrolytes. Our first-principles study paves the way towards the development of large-scale and sustainable electrical energy storage.</div>


Sign in / Sign up

Export Citation Format

Share Document