Molecular Dynamics Study on Thermal Conductivity of Single-Walled Carbon Nanotubes

Author(s):  
Bingyang Cao ◽  
Quanwen Hou ◽  
Zengyuan Guo ◽  
Wusheng Zhang

In this paper, we study the thermal conductivities of sing-walled carbon nanotubes (CNTs) and CNTs-based nanocomposites using molecular dynamics simulations. Length dependence of the thermal conductivity of (5, 5) carbon nanotube at 300 K and 1000 K is simulated. At room temperature the thermal conductivity shows linear length dependence with the tube length less than 40 nm, which indicates the completely ballistic transport. The thermal conductivity increases with the increase of the nanotube length, but the increase rate decreases as the length increases. It shows that the phonon transport transits from ballistic to diffusive. In the simulations, the power exponent of the thermal conductivity of carbon nanotube to the tube length decreases by decaying exponential function as the tube length increases. We also observe a decrease of the low-dimensional effects by the surrounding matters. A carbon-nanotube-atom-fixed and -activated scheme of non-equilibrium molecular dynamics simulations is put forward to extract the thermal conductivity of carbon nanotubes embedded in solid argon. Though a 6.5% volume fraction of CNTs increases the composite thermal conductivity by about twice larger than that of the pure basal material, the thermal conductivity of CNTs embedded in solids is found to be decreased by 1/8–1/5 with reference to that of pure ones. The decrease of the intrinsic thermal conductivity of the solid-embedded CNTs and the thermal interface resistance are demonstrated to be responsible for the results.

2011 ◽  
Vol 133 (2) ◽  
Author(s):  
Tarek Ragab ◽  
Cemal Basaran

The unravelling of (10, 10) and (18, 0) single-walled carbon nanotubes (SWCNTs) is simulated using molecular dynamics simulations at different temperatures. Two different schemes are proposed to simulate the unravelling; completely restraining the last atom in the chain and only restraining it in the axial direction. The forces on the terminal atom in the unravelled chain in the axial and radial directions are reported till the separation of the atomic chain from the carbon nanotube structure. The force-displacement relation for a chain structure at different temperatures is calculated and is compared to the unravelling forces. The axial stresses in the body of the carbon nanotube are calculated and are compared to the failure stresses of that specific nanotube. Results show that the scheme used to unravel the nanotube and the temperature can only effect the duration needed before the separation of some or all of the atomic chain from the nanotube, but does not affect the unravelling forces. The separation of the atomic chain from the nanotube is mainly due to the impulsive excessive stresses in the chain due to the addition of a new atom and rarely due to the steady stresses in the chain. From the simulations, it is clear that the separation of the chain will eventually happen due to the closing structure occurring at the end of the nanotube that would not be possible in multiwalled nanotubes.


Nanomaterials ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 809 ◽  
Author(s):  
Ravindra Sunil Dhumal ◽  
Dinesh Bommidi ◽  
Iman Salehinia

Variation in the thermal conductivity of a metal-coated tri-walled carbon nanotube (3WCNT), in the presence of vacancies, was studied using non-equilibrium molecular dynamics simulations. A Two-Temperature model was used to account for electronic contribution to heat transfer. For 3WCNT with 0.5% and 1% random vacancies, there was 76%, and 86% decrease in the thermal conductivity, respectively. In that order, an overall ~66% and ~140% increase in the thermal conductivity was recorded when 3 nm thick coating of metal (nickel) was deposited around the defective models. We have also explored the effects of tube specific and random vacancies on thermal conductivity of the 3WCNT. The changes in thermal conductivity have also been justified by the changes in vibrational density of states of the 3WCNT and the individual tubes. The results obtained can prove to be useful for countering the detrimental effects of vacancies in carbon nanotubes.


RSC Advances ◽  
2017 ◽  
Vol 7 (63) ◽  
pp. 39480-39489 ◽  
Author(s):  
Dan Xia ◽  
Yongchao Luo ◽  
Qiang Li ◽  
Qingzhong Xue ◽  
Xiaomin Zhang ◽  
...  

The Pt nanowire with proper diameter is able to extract the inner wall/s in nested double-walled/multi-walled carbon nanotubes. For the multi-walled carbon nanotubes, the Pt nanowire with proper diameter can only peel off the outermost wall.


Sign in / Sign up

Export Citation Format

Share Document