Optical Properties of Thin Crystalline Silicon Nanostructures for Photovoltaic Applications

Author(s):  
Xing Fang ◽  
Changying Zhao ◽  
Hua Bao

The optical performance of four lattice crystalline silicon nanostructures, i.e., cylinder nanowire arrays, cylinder nanohole arrays, square nanowire arrays and square nanohole arrays is numerically investigated in this paper. The method of rigorous coupled-wave analysis (RCWA), an efficient and accurate computational tool, is used to calculate the optical absorption for the lattice constant from 100 nm to 1500 nm. The results indicate that the lattice constant is the foremost structure parameter to determine the ultimate efficiency, and the ultimate efficiencies are reached at the lattice constant around 600 nm. The optimal filling ratio of square nanowire arrays is the lowest among the four nonostructures, whereas the cylinder nanohole arrays exhibit a broad range of optimal filling ratios. Lower optimal filling ratios implies that the nanostructures cost less raw material while maintain the high ultimate efficiencies. The high ultimate efficiency of all structures can be achieved over a large range of incident angles, even the efficiency will slowly decrease as the incident angle increases.

Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1567
Author(s):  
Shinpei Ogawa ◽  
Shoichiro Fukushima ◽  
Masaaki Shimatani

Hexagonal boron nitride (hBN) exhibits natural hyperbolic dispersion in the infrared (IR) wavelength spectrum. In particular, the hybridization of its hyperbolic phonon polaritons (HPPs) and surface plasmon resonances (SPRs) induced by metallic nanostructures is expected to serve as a new platform for novel light manipulation. In this study, the transmission properties of embedded hBN in metallic one-dimensional (1D) nanoslits were theoretically investigated using a rigorous coupled wave analysis method. Extraordinary optical transmission (EOT) was observed in the type-II Reststrahlen band, which was attributed to the hybridization of HPPs in hBN and SPRs in 1D nanoslits. The calculated electric field distributions indicated that the unique Fabry–Pérot-like resonance was induced by the hybridization of HPPs and SPRs in an embedded hBN cavity. The trajectory of the confined light was a zigzag owing to the hyperbolicity of hBN, and its resonance number depended primarily on the aspect ratio of the 1D nanoslit. Such an EOT is also independent of the slit width and incident angle of light. These findings can not only assist in the development of improved strategies for the extreme confinement of IR light but may also be applied to ultrathin optical filters, advanced photodetectors, and optical devices.


2012 ◽  
Vol 134 (10) ◽  
Author(s):  
Yutao Zhang ◽  
Yimin Xuan

A microscale-structured surface consisting of heavily doped silicon rectangle grating and slotted silver layer is studied for omnidirectional narrowband emitter. Numerical simulation is implemented to obtain spectral emittance in mid-infrared region (6–16 μm) for the transverse magnetic incidence by using the rigorous coupled-wave analysis (RCWA) method. The effects of structural parameters and incident angle on its spectral emittance are investigated. In virtue of the microcavity effect, an omnidirectional narrowband emitter is proposed. By selecting a group of structural parameters, its peak emittance reaches as high as 0.998, and the peak width Δλ/λ of the emittance peak is as narrow as 0.03 at the specified wavelength. The results reveal that our proposed structured surface has the nice spectral features of angular uniformity and wavelength-selective characteristic, which can be applied to design novel narrowband thermal emitters and detectors in the infrared region.


2022 ◽  
Vol 9 ◽  
Author(s):  
Zhengqiong Dong ◽  
Hang Zhao ◽  
Lei Nie ◽  
Shaokang Tang ◽  
Chenyang Li ◽  
...  

The Morpho butterfly wing with tree-shaped alternating multilayer is an effective chemical biosensor to distinguish between ambient medium, and its detection sensitivity is inextricably linked to the measurement configuration including incident angle, azimuthal angle, and so on. In order to reveal the effects and the selection of measurement configuration. In this work, the model of the Morpho butterfly wing is built using the rigorous coupled-wave analysis method by considering its profile is a rectangular-groove grating. On basis of the above model, the reflectivity of different diffraction orders at a different incident angle and azimuthal angle is calculated, and the influence of incident angle and azimuthal angle on performance of Morpho butterfly scales-based biosensor is analyzed. The optimal incident angle at each azimuthal angle is given according to the proposed choice rule, then the azimuthal angle and the corresponding incident angle can be selected further.


2021 ◽  
Author(s):  
Zefan Lin ◽  
Bo Wang ◽  
Chen Fu

Abstract A novel wideband terahertz polarization beam splitter with special diffraction orders working at terahertz band is described in this paper. The polarizer can achieve high diffraction efficiency and uniformity in the 2.50 - 2.56 THz band. Based on rigorous coupled-wave analysis (RCWA) and simulated annealing algorithm, we proposed an efficient algorithm to optimize the polarizer. After calculations, 98.45% single-port high-efficiency reflection for transverse electric (TE) polarization and 42.33%/42.57% highly uniform dual-port beam splitting for transverse magnetic (TM) polarization were finally obtained. In addition, through RCWA and simplified modal method, the electromagnetic field distributions of TE and TM polarizations are shown visually and described quantitatively. Moreover, the results displayed in Sec. 3 prove that the grating possesses the characteristics of relatively large bandwidth and insensitivity to the incident angle. Therefore, the novel scheme in this paper has great reference value for the research of terahertz modulation devices and the integration of terahertz communication systems.


Author(s):  
Arjyajyoti Goswami ◽  
S Aravindan ◽  
PV Rao

Surface texturing helps in reducing the reflectance of the surface and hence it improves the ultimate efficiency of the solar cell. In this article, rigorous coupled wave analysis was used to find out the effect of different nanohole parameters such as nanohole diameter (D), pitch (P) and nanohole depth (H) on the reflectance and the ultimate efficiency of a c-Si solar cell of 275 μm thickness. Response surface methodology was used for co-relating the nanohole geometry parameters with the ultimate efficiency. The developed relation was used for optimization using genetic algorithm implemented through MATLAB. The optimized parameters have resulted in a 17.81% improvement in ultimate efficiency as compared with bare substrate of same thickness. A comparative study was made on the effect of parameters on the ultimate efficiency of the solar cell and it was found that higher value of diameter yielded greater ultimate efficiency. Finally, the performance of structured Si was compared with that of bare Si and Si coated with anti-reflective coating in various configurations. A 50 nm deep hole filled with anti-reflective coating and with a top surface anti-reflective coating of 75 nm yielded the highest ultimate efficiency of 47.61%.


2011 ◽  
Vol 211-212 ◽  
pp. 465-468
Author(s):  
De Wei Chen

Since the development almost a decade ago of the first biosensor based on surface plasmon resonance (SPR), the use of this technique has increased steadily. In this study, we theoretically investigated the sensing character of SPR sensor with reflection type metallic with Rigorous Coupled Wave Analysis (RCWA) method, and the mechanism is analyzed by the field distribution. It is found that the sensitivity of negative diffraction order, which goes higher quickly as the resonant angle increases, is much greater than that of positive diffraction order.


Sign in / Sign up

Export Citation Format

Share Document