scholarly journals Effects of Measurement Configurations on the Sensitivity of Morpho Butterfly Scales Based Chemical Biosensor

2022 ◽  
Vol 9 ◽  
Author(s):  
Zhengqiong Dong ◽  
Hang Zhao ◽  
Lei Nie ◽  
Shaokang Tang ◽  
Chenyang Li ◽  
...  

The Morpho butterfly wing with tree-shaped alternating multilayer is an effective chemical biosensor to distinguish between ambient medium, and its detection sensitivity is inextricably linked to the measurement configuration including incident angle, azimuthal angle, and so on. In order to reveal the effects and the selection of measurement configuration. In this work, the model of the Morpho butterfly wing is built using the rigorous coupled-wave analysis method by considering its profile is a rectangular-groove grating. On basis of the above model, the reflectivity of different diffraction orders at a different incident angle and azimuthal angle is calculated, and the influence of incident angle and azimuthal angle on performance of Morpho butterfly scales-based biosensor is analyzed. The optimal incident angle at each azimuthal angle is given according to the proposed choice rule, then the azimuthal angle and the corresponding incident angle can be selected further.

Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1567
Author(s):  
Shinpei Ogawa ◽  
Shoichiro Fukushima ◽  
Masaaki Shimatani

Hexagonal boron nitride (hBN) exhibits natural hyperbolic dispersion in the infrared (IR) wavelength spectrum. In particular, the hybridization of its hyperbolic phonon polaritons (HPPs) and surface plasmon resonances (SPRs) induced by metallic nanostructures is expected to serve as a new platform for novel light manipulation. In this study, the transmission properties of embedded hBN in metallic one-dimensional (1D) nanoslits were theoretically investigated using a rigorous coupled wave analysis method. Extraordinary optical transmission (EOT) was observed in the type-II Reststrahlen band, which was attributed to the hybridization of HPPs in hBN and SPRs in 1D nanoslits. The calculated electric field distributions indicated that the unique Fabry–Pérot-like resonance was induced by the hybridization of HPPs and SPRs in an embedded hBN cavity. The trajectory of the confined light was a zigzag owing to the hyperbolicity of hBN, and its resonance number depended primarily on the aspect ratio of the 1D nanoslit. Such an EOT is also independent of the slit width and incident angle of light. These findings can not only assist in the development of improved strategies for the extreme confinement of IR light but may also be applied to ultrathin optical filters, advanced photodetectors, and optical devices.


2013 ◽  
Vol 135 (3) ◽  
Author(s):  
Y. Jiao ◽  
L. H. Liu ◽  
P.-F. Hsu

The wavelength-selective radiative property is becoming a noticeable requirement in various technological fields. There are many researches that have been focused on the radiative properties of metal periodic microstructure surface. However, the spectral bandwidth of high absorptance is often too narrow if excited by the conventional grating structures. In order to solve this problem, two novel periodic grating structures are proposed in this paper, which can increase the effective bandwidth of high absorption peaks. One of the new periodic grating structures, called dual-groove grating, is constructed by adding a rectangular groove at the bottom of the simple grating's groove through a secondary microscale processing. The other grating structure, which is called complex dual-groove grating, is constructed by superposing a dual-groove grating with a simple grating within one period. Aluminum grating structure is taken as an example to show the advantage of proposed structures on increasing effective bandwidth of high absorption peaks within mid-infrared and far-infrared spectra. The rigorous coupled-wave analysis (RCWA) is used to calculate the absorptance of periodic grating structures. The results shows that, two close absorption peaks and three connecting absorption peaks are obtained respectively for the two periodic grating structures. The effective bandwidth of high absorption peaks within interested wavelength band is improved obviously by these two microscale grating structures.


Author(s):  
Xing Fang ◽  
Changying Zhao ◽  
Hua Bao

The optical performance of four lattice crystalline silicon nanostructures, i.e., cylinder nanowire arrays, cylinder nanohole arrays, square nanowire arrays and square nanohole arrays is numerically investigated in this paper. The method of rigorous coupled-wave analysis (RCWA), an efficient and accurate computational tool, is used to calculate the optical absorption for the lattice constant from 100 nm to 1500 nm. The results indicate that the lattice constant is the foremost structure parameter to determine the ultimate efficiency, and the ultimate efficiencies are reached at the lattice constant around 600 nm. The optimal filling ratio of square nanowire arrays is the lowest among the four nonostructures, whereas the cylinder nanohole arrays exhibit a broad range of optimal filling ratios. Lower optimal filling ratios implies that the nanostructures cost less raw material while maintain the high ultimate efficiencies. The high ultimate efficiency of all structures can be achieved over a large range of incident angles, even the efficiency will slowly decrease as the incident angle increases.


Author(s):  
Y. Jiao ◽  
L. H. Liu ◽  
P.-f. Hsu

The wavelength-selective radiative properties are becoming noticeable requirements in various technological fields. There have been many researches focus on the radiative properties of periodic microstructured surface of metals. However, the spectral bandwidth of high absorptance is often too narrow by applying the conventional grating structures. In order to solve this problem, in this paper we propose two novel periodic grating structures, which can widen the spectral bandwidth of high absorptance. One of the new periodic grating structures, called dual-groove grating, is constructed by adding a rectangular groove at the bottom of the simple binary grating’s groove through a secondary microscale processing. The other novel grating structure, which is called complex dual-groove grating, is constructed by superposing a dual-groove grating and a simple binary grating within one period. Aluminum grating structure is taken as an example to show how the geometric parameters based on the novel structure widen the spectral bandwidth of high absorptance within mid-infrared and far-infrared spectra. The rigorous coupled-wave analysis (RCWA) is used to calculate the absorptance of periodic grating structures. The results show that, two close absorption peaks and three connecting absorption peaks are obtained respectively for the two novel periodic grating structures. These two novel structures may widen the effective spectral bandwidth of high absorptance of the microscale periodic grating structures.


2011 ◽  
Vol 31 (7) ◽  
pp. 0733002
Author(s):  
杨雪峰 Yang Xuefeng ◽  
史铁林 Shi Tielin ◽  
左海波 Zuo Haibo ◽  
江轩 Jiang Xuan ◽  
廖广兰 Liao Guanglan

2012 ◽  
Vol 134 (10) ◽  
Author(s):  
Yutao Zhang ◽  
Yimin Xuan

A microscale-structured surface consisting of heavily doped silicon rectangle grating and slotted silver layer is studied for omnidirectional narrowband emitter. Numerical simulation is implemented to obtain spectral emittance in mid-infrared region (6–16 μm) for the transverse magnetic incidence by using the rigorous coupled-wave analysis (RCWA) method. The effects of structural parameters and incident angle on its spectral emittance are investigated. In virtue of the microcavity effect, an omnidirectional narrowband emitter is proposed. By selecting a group of structural parameters, its peak emittance reaches as high as 0.998, and the peak width Δλ/λ of the emittance peak is as narrow as 0.03 at the specified wavelength. The results reveal that our proposed structured surface has the nice spectral features of angular uniformity and wavelength-selective characteristic, which can be applied to design novel narrowband thermal emitters and detectors in the infrared region.


2021 ◽  
Author(s):  
Zefan Lin ◽  
Bo Wang ◽  
Chen Fu

Abstract A novel wideband terahertz polarization beam splitter with special diffraction orders working at terahertz band is described in this paper. The polarizer can achieve high diffraction efficiency and uniformity in the 2.50 - 2.56 THz band. Based on rigorous coupled-wave analysis (RCWA) and simulated annealing algorithm, we proposed an efficient algorithm to optimize the polarizer. After calculations, 98.45% single-port high-efficiency reflection for transverse electric (TE) polarization and 42.33%/42.57% highly uniform dual-port beam splitting for transverse magnetic (TM) polarization were finally obtained. In addition, through RCWA and simplified modal method, the electromagnetic field distributions of TE and TM polarizations are shown visually and described quantitatively. Moreover, the results displayed in Sec. 3 prove that the grating possesses the characteristics of relatively large bandwidth and insensitivity to the incident angle. Therefore, the novel scheme in this paper has great reference value for the research of terahertz modulation devices and the integration of terahertz communication systems.


2011 ◽  
Vol 211-212 ◽  
pp. 465-468
Author(s):  
De Wei Chen

Since the development almost a decade ago of the first biosensor based on surface plasmon resonance (SPR), the use of this technique has increased steadily. In this study, we theoretically investigated the sensing character of SPR sensor with reflection type metallic with Rigorous Coupled Wave Analysis (RCWA) method, and the mechanism is analyzed by the field distribution. It is found that the sensitivity of negative diffraction order, which goes higher quickly as the resonant angle increases, is much greater than that of positive diffraction order.


Sign in / Sign up

Export Citation Format

Share Document