Experimental Investigation of the Air Flow Behavior and Heat Transfer Characteristics in Microchannels With Different Channel Lengths

Author(s):  
Zhibing Zhu ◽  
Zhi Tao ◽  
Yitu Tian ◽  
Haiwang Li

This paper attempts to experimentally investigate the influence of channel lengths to the flow behavior and heat transfer characteristics in circular microchannels. The diameter of circular microchannels are 0.4mm and the lengths of them are 10mm and 20mm, respectively. All tests were performed with air. The experiments were completed with Reynolds number in the range of 300∼2700. Results of experiments show that the length of microchannels has remarkable effects on the performance of flow behavior and heat transfer characteristics. For the flow behavior, both the friction factor and Poiseuille number drop as the channel length increases, and all the experimental value are higher than the theoretical one. Moreover, the channel length doesn’t influent the value of critical Reynolds number. For the heat transfer characteristics, Nusselt number decreases with the increase of the channel length. The channel length also has a huge influence on the thermal performance. A better thermal performance is obtained in a shorter channel. The results also indicated that in both cases, the friction factor decreases with the increase of the Reynolds number. At the same time, the Poiseuille number increases when the Reynolds number keeps rising. This phenomenon is different from traditional theory that Poiseuille number is widely considered as a constant in laminar regime. It is also observed that the value of critical Reynolds number is between 1500 and 1700 in this paper, this value is lower than the value of theoretical critical Reynolds number of 2300. Nusselt number increases as the increase of the Reynolds numbers, however, the traditional theory considered that it is a constant in laminar regime.

2017 ◽  
Vol 139 (5) ◽  
Author(s):  
Zhi Tao ◽  
Zhibing Zhu ◽  
Haiwang Li

This paper attempts to experimentally investigate the influence of channel length on the flow behavior and heat transfer characteristics in circular microchannels. The diameters of the channels were 0.4 mm and the length of them were 5 mm, 10 mm, 15 mm, and 20 mm, respectively. All experiments were performed with air and completed with Reynolds number in the range of 300–2700. Results of the experiments show that the length of microchannels has remarkable effects on the performance of flow behavior and heat transfer characteristics. Both the friction factor and Poiseuille number drop with the increase of channel length, and the experimental values are higher than the theoretical ones. Moreover, the channel length does not influence the value of critical Reynolds number. Nusselt number decrease as the increase of channel length. Larger Nusselt numbers are obtained in shorter channels. The results also indicate that in all cases, the friction factor decreases and the Poiseuille number increases with the increase of the Reynolds number. It is also observed that the value of critical Reynolds number is between 1500 and 1700 in this paper, which is lower than the value of theoretical critical Reynolds number of 2300.


2007 ◽  
Vol 11 (1) ◽  
pp. 17-26 ◽  
Author(s):  
Zakir Hossain ◽  
Sadrul Islam

Time dependent Navier-Stokes and energy equations have been solved to investigate the fluid flow and heat transfer characteristics in wavy channels. Three different types of two dimensional wavy geometries (e.g. sine-shaped, triangular, and arc-shaped) are considered. All of them are of single wave and have same geometric dimensions. Periodic boundary conditions are used to attain fully developed flow. The flow in the channels has been observed to be steady up to a critical Reynolds number, which depends on the geometric configuration. Beyond the critical Reynolds number a self-sustained oscillatory flow has been observed. As a result of this oscillation, there is increased mixing between core and the near-wall fluids, thereby increasing the heat transfer rate. For the same geometric dimensions, flow becomes unsteady at relatively lower Reynolds number in the arc-shaped channel. .


Author(s):  
Liu Yangpeng ◽  
Xu Guoqiang ◽  
Xiang Luo ◽  
Ma Jiandong ◽  
Li Haiwang

The structure of sintered woven wire mesh is one of classical porous medium. The porosity is one of the major parameters for the porous media. This paper presents the experimental results of the effect of porosity on internal flow behavior and heat transfer characteristics of sintered metal wire mesh structures. All the three test pieces made of stainless steel wires with the same wire diameter (d = 0.14mm) were sintered after woven. One of them was sintered using two sintered metal wire mesh structures with different porosities (55% and 26%) so that the porosity changed along the flow direction. The porosities of the other two test pieces are 55% and 26%, respectively. The experiments were completed with the Reynolds number in the range of 10 to 42. The permeability and inertia coefficient of each test piece were obtained as well as the friction factor. Infrared camera was used to measure the wall temperature of the test pieces to get the Nusselt numbers. The results show that for all test pieces permeability increases as porosity increases, while inertia coefficient shows the opposite trend. Pressure drop of all pieces increases with respect to the mass flow rate. Friction factor decreases as the Reynolds number increases. The curves for test piece #3 fall between those for test piece #1 and #2 and are more close to that for test #2. Nusselt number increases when the Reynolds number keeps arising. However, The Nusselt numbers of the test piece with changed porosity are influenced by the flow direction. There are no significant correlations of the flow behavior and heat transfer characteristics between the test piece with changed porosity and the other two test pieces with constant porosities.


Author(s):  
Kyohei Isobe ◽  
Chungpyo Hong ◽  
Yutaka Asako ◽  
Ichiro Ueno

Numerical simulations were performed to obtain for heat transfer characteristics of turbulent gas flow in micro-tubes with constant wall temperature. The numerical methodology was based on Arbitrary-Lagrangian-Eulerinan (ALE) method to solve compressible momentum and energy equations. The Lam-Bremhorst Low-Reynolds number turbulence model was employed to evaluate eddy viscosity coefficient and turbulence energy. The tube diameter ranges from 100 μm to 400 μm and the aspect ratio of the tube diameter and the length is fixed at 200. The stagnation temperature is fixed at 300 K and the computations were done for wall temperature, which ranges from 305 K to 350 K. The stagnation pressure was chosen in such a way that the flow is in turbulent flow regime. The obtained Reynolds number ranges widely up to 10081 and the Mach number at the outlet ranges from 0.1 to 0.9. The heat transfer rates obtained by the present study are higher than those of the incompressible flow. This is due to the additional heat transfer near the micro-tube outlet caused by the energy conversion into kinetic energy.


2020 ◽  
Vol 24 (2 Part A) ◽  
pp. 767-775 ◽  
Author(s):  
Djamel Sahel ◽  
Houari Ameur ◽  
Touhami Baki

The baffling technique is well-known for its efficiency in terms of enhancement of heat transfer rates throught channels. However, the baffles insert is accompanied by an increase in the friction factor. This issue remains a great challenge for the designers of heat exchangers. To overcome this issue, we suggest in the present paper a new design of baffles which is here called graded baffle-design. The baffles have an up- or down-graded height along the channel length. This geometry is characterized by two ratios: up-graded baffle ratio and down-graded baffle ratio which are varied from 0-0.08. For a range of Reynolds number varying from 104 to 2 ? 104, the turbulent flow and heat transfer characteristics of a heat exchanger channel are numerically studied by the computer code FLUENT. The obtained results revealed an enhancement in the thermohydraulic performance offered by the new suggested design. For the channel with a down-graded baffle ratio equal to 0.08, the friction factors decreased by 4-8%


2012 ◽  
Vol 16 (2) ◽  
pp. 593-603 ◽  
Author(s):  
M. Nili-Ahmadabadi ◽  
H. Karrabi

This paper will present the results of the experimental investigation of heat transfer in a non-annular channel between rotor and stator similar to a real generator. Numerous experiments and numerical studies have examined flow and heat transfer characteristics of a fluid in an annulus with a rotating inner cylinder. In the current study, turbulent flow region and heat transfer characteristics have been studied in the air gap between the rotor and stator of a generator. The test rig has been built in a way which shows a very good agreement with the geometry of a real generator. The boundary condition supplies a non-homogenous heat flux through the passing air channel. The experimental devices and data acquisition method are carefully described in the paper. Surface-mounted thermocouples are located on the both stator and rotor surfaces and one slip ring transfers the collected temperature from rotor to the instrument display. The rotational speed of rotor is fixed at three under: 300rpm, 900 rpm and 1500 rpm. Based on these speeds and hydraulic diameter of the air gap, the Reynolds number has been considered in the range: 4000<Rez<30000. Heat transfer and pressure drop coefficients are deduced from the obtained data based on a theoretical investigation and are expressed as a formula containing effective Reynolds number. To confirm the results, a comparison is presented with Gazley?s (1985) data report. The presented method and established correlations can be applied to other electric machines having similar heat flow characteristics.


2014 ◽  
Vol 591 ◽  
pp. 3-6
Author(s):  
M. Raja ◽  
R. Vijayan ◽  
R. Vivekananthan ◽  
M.A. Vadivelu

In the present work, the effect of nanofluid in a shell and tube heat exchanger was studied numerically. The effects of Reynolds number, volume concentration of suspended nanoparticles on the heat transfer characteristics were investigated using CFD software. Finally, the effect of the nanofluid on Shell and tube heat exchanger performance was studied and compared to that of a conventional fluid (i.e., water).


Author(s):  
Sofen K. Jena ◽  
Swarup K. Mahapatra

The current study is focused on thermal radiation interaction with the natural convection of atmospheric brown cloud (ABC). The current study puts emphasis on ultra fine carbon-black particle suspension of several nano meter range along with some pollutant gas mixture with atmospheric air. The numerical simulation of double diffusive thermo-gravitational convection of ABC is done with Hide and Mason laboratory model for atmosphere. The effect of flow circulation is simulated by setting different value of buoyancy ratios. The effect of participating media radiation has been investigated for various values of optical depth. The governing equations, describing circulation of ABC are solved using modified Marker and Cell method. Gradient dependent consistent hybrid upwind scheme of second order is used for discretization of the convective terms. Discrete ordinate method, with S8 approximation is used to solve radiative transport equation. Comprehensive studies on controlling parameters that affect the flow and heat transfer characteristics have been addressed. The results are provided in graphical and tabular form to delineate the flow behavior and heat transfer characteristics.


Sign in / Sign up

Export Citation Format

Share Document