Effect of Porosity on Flow Behavior and Heat Transfer Characteristics of Sintered Woven Wire Mesh Structures

Author(s):  
Liu Yangpeng ◽  
Xu Guoqiang ◽  
Xiang Luo ◽  
Ma Jiandong ◽  
Li Haiwang

The structure of sintered woven wire mesh is one of classical porous medium. The porosity is one of the major parameters for the porous media. This paper presents the experimental results of the effect of porosity on internal flow behavior and heat transfer characteristics of sintered metal wire mesh structures. All the three test pieces made of stainless steel wires with the same wire diameter (d = 0.14mm) were sintered after woven. One of them was sintered using two sintered metal wire mesh structures with different porosities (55% and 26%) so that the porosity changed along the flow direction. The porosities of the other two test pieces are 55% and 26%, respectively. The experiments were completed with the Reynolds number in the range of 10 to 42. The permeability and inertia coefficient of each test piece were obtained as well as the friction factor. Infrared camera was used to measure the wall temperature of the test pieces to get the Nusselt numbers. The results show that for all test pieces permeability increases as porosity increases, while inertia coefficient shows the opposite trend. Pressure drop of all pieces increases with respect to the mass flow rate. Friction factor decreases as the Reynolds number increases. The curves for test piece #3 fall between those for test piece #1 and #2 and are more close to that for test #2. Nusselt number increases when the Reynolds number keeps arising. However, The Nusselt numbers of the test piece with changed porosity are influenced by the flow direction. There are no significant correlations of the flow behavior and heat transfer characteristics between the test piece with changed porosity and the other two test pieces with constant porosities.

2017 ◽  
Vol 139 (5) ◽  
Author(s):  
Zhi Tao ◽  
Zhibing Zhu ◽  
Haiwang Li

This paper attempts to experimentally investigate the influence of channel length on the flow behavior and heat transfer characteristics in circular microchannels. The diameters of the channels were 0.4 mm and the length of them were 5 mm, 10 mm, 15 mm, and 20 mm, respectively. All experiments were performed with air and completed with Reynolds number in the range of 300–2700. Results of the experiments show that the length of microchannels has remarkable effects on the performance of flow behavior and heat transfer characteristics. Both the friction factor and Poiseuille number drop with the increase of channel length, and the experimental values are higher than the theoretical ones. Moreover, the channel length does not influence the value of critical Reynolds number. Nusselt number decrease as the increase of channel length. Larger Nusselt numbers are obtained in shorter channels. The results also indicate that in all cases, the friction factor decreases and the Poiseuille number increases with the increase of the Reynolds number. It is also observed that the value of critical Reynolds number is between 1500 and 1700 in this paper, which is lower than the value of theoretical critical Reynolds number of 2300.


Author(s):  
Xinjun Wang ◽  
Xiaowei Bai ◽  
Jiangbo Wu ◽  
Rui Liu ◽  
Ding Zhu ◽  
...  

By using the CFX software, three-dimensional flow and heat transfer characteristics in rectangular cooling ducts with in-line and staggered array pin-fins of gas turbine blade trailing edge were numerically simulated. The effects of in-line and staggered arrays of pin-fins, flow Reynolds number as well as density of cylindrical pin-fins in flow direction on heat transfer characteristics were analyzed. Both in the cases of in-line and staggered arrays of pin-fins, the results show that the pin-fin surface averaged Nusselt number increases with the increasing of Reynolds number. In the case of the same Reynolds number, the mean Nusselt number of pin-fin surface decreased with the increasing of X/D (the ratio of streamwise pin-pitch to pin-fin diameter) value. The Nusselt number increases gradually before the first pin-fin row and then reached the fully developed value at fourth or fifth row. The pin-fin Nusselt number at flow direction is larger than that at back flow direction. Along the height direction of pin-fin, the Nusselt number in middle area is larger.


Author(s):  
Zhibing Zhu ◽  
Zhi Tao ◽  
Yitu Tian ◽  
Haiwang Li

This paper attempts to experimentally investigate the influence of channel lengths to the flow behavior and heat transfer characteristics in circular microchannels. The diameter of circular microchannels are 0.4mm and the lengths of them are 10mm and 20mm, respectively. All tests were performed with air. The experiments were completed with Reynolds number in the range of 300∼2700. Results of experiments show that the length of microchannels has remarkable effects on the performance of flow behavior and heat transfer characteristics. For the flow behavior, both the friction factor and Poiseuille number drop as the channel length increases, and all the experimental value are higher than the theoretical one. Moreover, the channel length doesn’t influent the value of critical Reynolds number. For the heat transfer characteristics, Nusselt number decreases with the increase of the channel length. The channel length also has a huge influence on the thermal performance. A better thermal performance is obtained in a shorter channel. The results also indicated that in both cases, the friction factor decreases with the increase of the Reynolds number. At the same time, the Poiseuille number increases when the Reynolds number keeps rising. This phenomenon is different from traditional theory that Poiseuille number is widely considered as a constant in laminar regime. It is also observed that the value of critical Reynolds number is between 1500 and 1700 in this paper, this value is lower than the value of theoretical critical Reynolds number of 2300. Nusselt number increases as the increase of the Reynolds numbers, however, the traditional theory considered that it is a constant in laminar regime.


2021 ◽  
Vol 11 (2) ◽  
pp. 751
Author(s):  
Xuefeng Gao ◽  
Yanjun Zhang ◽  
Zhongjun Hu ◽  
Yibin Huang

As fluid passes through the fracture of an enhanced geothermal system, the flow direction exhibits distinct angular relationships with the geometric profile of the rough fracture. This will inevitably affect the heat transfer characteristics in the fracture. Therefore, we established a hydro-thermal coupling model to study the influence of the fluid flow direction on the heat transfer characteristics of granite single fractures and the accuracy of the numerical model was verified by experiments. Results demonstrate a strong correlation between the distribution of the local heat transfer coefficient and the fracture morphology. A change in the flow direction is likely to alter the transfer coefficient value and does not affect the distribution characteristics along the flow path. Increasing injection flow rate has an enhanced effect. Although the heat transfer capacity in the fractured increases with the flow rate, a sharp decline in the heat extraction rate and the total heat transfer coefficient is also observed. Furthermore, the model with the smooth fracture surface in the flow direction exhibits a higher heat transfer capacity compared to that of the fracture model with varying roughness. This is attributed to the presence of fluid deflection and dominant channels.


Author(s):  
Kyohei Isobe ◽  
Chungpyo Hong ◽  
Yutaka Asako ◽  
Ichiro Ueno

Numerical simulations were performed to obtain for heat transfer characteristics of turbulent gas flow in micro-tubes with constant wall temperature. The numerical methodology was based on Arbitrary-Lagrangian-Eulerinan (ALE) method to solve compressible momentum and energy equations. The Lam-Bremhorst Low-Reynolds number turbulence model was employed to evaluate eddy viscosity coefficient and turbulence energy. The tube diameter ranges from 100 μm to 400 μm and the aspect ratio of the tube diameter and the length is fixed at 200. The stagnation temperature is fixed at 300 K and the computations were done for wall temperature, which ranges from 305 K to 350 K. The stagnation pressure was chosen in such a way that the flow is in turbulent flow regime. The obtained Reynolds number ranges widely up to 10081 and the Mach number at the outlet ranges from 0.1 to 0.9. The heat transfer rates obtained by the present study are higher than those of the incompressible flow. This is due to the additional heat transfer near the micro-tube outlet caused by the energy conversion into kinetic energy.


2012 ◽  
Vol 16 (2) ◽  
pp. 593-603 ◽  
Author(s):  
M. Nili-Ahmadabadi ◽  
H. Karrabi

This paper will present the results of the experimental investigation of heat transfer in a non-annular channel between rotor and stator similar to a real generator. Numerous experiments and numerical studies have examined flow and heat transfer characteristics of a fluid in an annulus with a rotating inner cylinder. In the current study, turbulent flow region and heat transfer characteristics have been studied in the air gap between the rotor and stator of a generator. The test rig has been built in a way which shows a very good agreement with the geometry of a real generator. The boundary condition supplies a non-homogenous heat flux through the passing air channel. The experimental devices and data acquisition method are carefully described in the paper. Surface-mounted thermocouples are located on the both stator and rotor surfaces and one slip ring transfers the collected temperature from rotor to the instrument display. The rotational speed of rotor is fixed at three under: 300rpm, 900 rpm and 1500 rpm. Based on these speeds and hydraulic diameter of the air gap, the Reynolds number has been considered in the range: 4000<Rez<30000. Heat transfer and pressure drop coefficients are deduced from the obtained data based on a theoretical investigation and are expressed as a formula containing effective Reynolds number. To confirm the results, a comparison is presented with Gazley?s (1985) data report. The presented method and established correlations can be applied to other electric machines having similar heat flow characteristics.


2014 ◽  
Vol 591 ◽  
pp. 3-6
Author(s):  
M. Raja ◽  
R. Vijayan ◽  
R. Vivekananthan ◽  
M.A. Vadivelu

In the present work, the effect of nanofluid in a shell and tube heat exchanger was studied numerically. The effects of Reynolds number, volume concentration of suspended nanoparticles on the heat transfer characteristics were investigated using CFD software. Finally, the effect of the nanofluid on Shell and tube heat exchanger performance was studied and compared to that of a conventional fluid (i.e., water).


Author(s):  
Sofen K. Jena ◽  
Swarup K. Mahapatra

The current study is focused on thermal radiation interaction with the natural convection of atmospheric brown cloud (ABC). The current study puts emphasis on ultra fine carbon-black particle suspension of several nano meter range along with some pollutant gas mixture with atmospheric air. The numerical simulation of double diffusive thermo-gravitational convection of ABC is done with Hide and Mason laboratory model for atmosphere. The effect of flow circulation is simulated by setting different value of buoyancy ratios. The effect of participating media radiation has been investigated for various values of optical depth. The governing equations, describing circulation of ABC are solved using modified Marker and Cell method. Gradient dependent consistent hybrid upwind scheme of second order is used for discretization of the convective terms. Discrete ordinate method, with S8 approximation is used to solve radiative transport equation. Comprehensive studies on controlling parameters that affect the flow and heat transfer characteristics have been addressed. The results are provided in graphical and tabular form to delineate the flow behavior and heat transfer characteristics.


Sign in / Sign up

Export Citation Format

Share Document