Study of Micro-Structure Based Effective Thermal Conductivity of Graphite Foam

Author(s):  
Yue Chai ◽  
Xiaohu Yang ◽  
Xiangzhao Meng ◽  
Qunli Zhang ◽  
Liwen Jin

As a new type of functional material, porous graphite foam exhibits unique thermal physical properties and geometric characteristics in heat transfer applications. It has the advantages of low density, high specific surface area, high porosity and high bulk thermal conductivity, which can be used as the core component of small, lightweight, compact and efficient heat sinks. Effective thermal conductivity serves one of the key thermophysical properties for foam-cored heat sinks. The complex three-dimensional topology and interstitial fluids significantly affect the heat conduction through such kind of porous structures, reflecting a topologically based effective thermal conductivity. This paper presents a novel geometric model for representing the microstructure of graphite foams, with simplifications and modifications made on the actual pore structure of graphite foam. For calculation simplicity, we convert the realized geometry consisting of complex surfaces and tortuous ligaments into a simplified geometry with circular ligaments joined at cuboid nodes, on the basis of the volume equivalency rule. The multiple-layer method is used to divide the proposed geometry into solvable areas and the series-parallel relations are used to derive the analytical model for effective thermal conductivity. To physically explore the heat conduction mechanisms at pore scale, direction numerical simulations were conducted on the reconstructed geometric model. Achieving good agreement with experimental data, the present analytical model (based on the simplified geometry) is validated. Further, the numerically simulated conductivities follow the model prediction, favoring thermally that the two geometries are equal. The present geometry model is more realized and capable of reflecting the internal microstructure of graphite foam, which will benefit the understandings for the thermo-physical mechanisms of pore-scaled heat conduction and micro structures of graphite foam.

2017 ◽  
Vol 139 (5) ◽  
Author(s):  
Y. Chai ◽  
X. H. Yang ◽  
M. Zhao ◽  
Z. Y. Chen ◽  
X. Z. Meng ◽  
...  

As a relatively new type of functional material, porous graphite foam exhibits unique thermophysical properties. It possesses the advantages of low density, high specific surface area, and high bulk thermal conductivity and could be used as the core component of compact, lightweight, and efficient heat exchangers. Effective thermal conductivity serves one of the key thermophysical properties of foam-based heat exchangers. The complex three-dimensional topology and interstitial fluids significantly affect the heat conduction in the porous structure, reflecting a topologically based effective thermal conductivity. This paper presents a novel geometric model for representing the microstructure of graphite foams with simplifications and modifications made on the realistic pore structure, where the complex surfaces and tortuous ligaments were converted into a simplified geometry with cylindrical ligaments connected between cuboid nodes. The multiple-layer method was used to divide the proposed geometry into solvable areas, and the series–parallel relation was used to derive the analytical model for the effective thermal conductivity. To explore heat conduction mechanisms at the pore scale, direct numerical simulation was also conducted on the realistic geometric model. Achieving good agreement with experimental data, the simplified geometric model was validated. The numerically simulated conductivity followed the simplified model prediction that the two geometries are equivalent from thermal aspect. It validates further that the simplified model is capable of reflecting the internal microstructure of graphite foam, which would benefit the understandings of the thermophysical mechanisms of pore-scaled heat conduction and microstructures of graphite foam.


Author(s):  
Xinming Zhang ◽  
Qinghua Chen ◽  
Danling Zeng

Graphite foam is a new material for effective heat conduction, which possesses exceedingly good thermal physical properties, thus the investigation on it has absorbed wide attention of scientists and engineers. By using experimental method such a material was obtained in our lab, and the factors which influence the micro-structure of the material was preliminary discussed based on our experiments. However, the main focus of the present paper is placed on the determination of the effective thermal conductivity of the material. Firstly, in accordance with the microscopic structure of the material, a simplified geometric model was constructed. Based on it a heat conduction unit cell was proposed to calculate the effective thermal conductivity of the porous material. Then, a geometric transformation was carried out to transit the original simple model to the real fractal one. The effective thermal conductivity λ' and its averaged value λ'm for the bulk porous material were derived. Examples were provided to show the computational procedure and to confirm the availability of the method proposed. The influence factors on λm. in the fractal model were also discussed in detail.


Author(s):  
Eric N. Schmierer ◽  
Arsalan Razani ◽  
Scott Keating ◽  
Tony Melton

High porosity metal foams have been the subject of many investigations for use in heat transfer enhancement through increased effective thermal conductivity and surface area. Convection heat transfer applications with these foams have been investigated for a large range of Reynolds numbers. Common to these analyses is the need for quantitative information about the interfacial surface area and the effective thermal conductivity of the metal foam. The effective thermal conductivity of these metal foams have been well characterized, however little investigation has been made into the actual surface area of the foam and its dependence on the foam pore density and porosity. Three-dimensional x-ray computed tomography (CT) is used for determining interfacial surface area and ligament diameter of metal foam with porosities ranging from 0.85 to 0.97 and pore densities of 5, 10, 20, and 40 pores per inch. Calibration samples with known surface area and volume are utilized to benchmark the CT process. Foam results are compared to analytical results obtained from the development of a three-dimensional model of the high porosity open-celled foam. The results obtained are compared to results from previous investigations into these geometric parameters. Results from calibration sample comparison and analysis of the foam indicate the need for additional work in quantifying the repeatability and sources of error in CT measurement process.


Author(s):  
C. Channy Wong

Different types of fillers with high electrical and thermal conductivities, e.g. graphite and alumina, have been added to adhesive polymers to create composite materials with improved mechanical and electrical properties. Previous modeling efforts have found that it is relatively difficult to predict the effective thermal conductivity of a composite polymeric material when incorporated with large volume content of fillers. We have performed comprehensive computational analysis that models the thermal contacts between fillers. This unique setup can capture the critical heat conduction path to obtain the effective thermal conductivity of the composite materials. Results of these predictions and its comparison with experimental data will be presented in this paper.


2018 ◽  
Vol 61 (12) ◽  
pp. 1959-1966 ◽  
Author(s):  
JianLi Wang ◽  
YaMei Song ◽  
YuFeng Zhang ◽  
YuHan Hu ◽  
Hang Yin ◽  
...  

Author(s):  
Dmitriy Lazarev ◽  
Valeriy Artemov ◽  
Georgiy Yankov ◽  
Konstantin Minko

A three-dimensional mathematical model of unsteady heat and mass transfer in porous hydrogen-absorbing media, accounting for presence of “passive” gas admixtures, is developed. New technique for evaluation of effective thermal conductivity of porous medium, which consists of microparticles, is suggested. Effect of “passive” gas admixtures on heat and mass transfer and sorption rate in metal hydride reactor is analyzed. It is shown that decrease of effective thermal conductivity and partial hydrogen pressure under decrease of hydrogen concentration effect on the hydrogen sorption rate considerably. It is disclosed that an intensive 3D natural convection takes place in a gas volume of reactor under certain conditions. Numerical analysis of heat and mass transfer in metal-hydride reactor of hydrogen accumulation systems was done. Sorption of hydrogen in cylindrical reactors with external cooling and central supply of hydrogen are analyzed including reactors with finned active volume and tube-shell reactor with external and internal cooling cartridge matrix. Unsteady three dimensional temperature and concentration fields in solid phase are presented. Integral curves representing the dynamic of sorption and desorption are calculated. Data on efficiency of considered reactors are presented and compared.


Author(s):  
A. Gillman ◽  
G. Amadio ◽  
K. Matouš ◽  
T. L. Jackson

Obtaining an accurate higher order statistical description of heterogeneous materials and using this information to predict effective material behaviour with high fidelity has remained an outstanding problem for many years. In a recent letter, Gillman & Matouš (2014 Phys. Lett. A 378, 3070–3073. ()) accurately evaluated the three-point microstructural parameter that arises in third-order theories and predicted with high accuracy the effective thermal conductivity of highly packed material systems. Expanding this work here, we predict for the first time effective thermo-mechanical properties of granular Platonic solid packs using third-order statistical micromechanics. Systems of impenetrable and penetrable spheres are considered to verify adaptive methods for computing n -point probability functions directly from three-dimensional microstructures, and excellent agreement is shown with simulation. Moreover, a significant shape effect is discovered for the effective thermal conductivity of highly packed composites, whereas a moderate shape effect is exhibited for the elastic constants.


Sign in / Sign up

Export Citation Format

Share Document