Optimization of Heat Transfer Rate in the Rectangular Microchannel of Different Aspect Ratios With Constant Cross Sectional Area

Author(s):  
F. Kowsary ◽  
N. Noroozi ◽  
M. Rezaei Barmi

The increased power dissipation and reduced dimensions of microelectronics devices have emphasized the need for highly efficient compact cooling technologies. Microchannel heat sinks are of particular interest due to the very high rates of heat transfer they enable in conjunction with greatly reduced heat sink length scales and coolant mass flow rate. Therefore, in the present work, optimization of laminar convective heat transfer in the microchannel heat sinks is investigated for uniform heat flux and different cross sectional areas of different aspect ratios. Three-dimensional numerical simulations of general form of energy equation were performed to predict Nusselt number in the laminar flow regime. Using these results, an optimum forced convective heat transfer coefficient was computed for several cross sectional areas and Reynolds numbers, utilizing the univariable search method. Different aspect ratios have different influences on Nusselt number in thermally developing and fully developed regions for different cross sectional areas and Reynolds numbers. There exists an optimum Nusselt number for each Reynolds number and cross sectional area by varying aspect ratio. Thus, optimized state is computed and related graphs are presented.

2014 ◽  
Vol 136 (10) ◽  
Author(s):  
B. V. K. Reddy ◽  
Matthew Barry ◽  
John Li ◽  
Minking K. Chyu

The performance of Π shaped conventional and composite thermoelectric devices (TEDs) applied to waste heat recovery by taking the Fourier heat conduction, Joule heating, and the Peltier and Thomson effects in TE materials is investigated using analytical solutions. The TE legs built with semiconductor materials bonded onto a highly conductive interconnector material in a segmented fashion is treated as the composite TED, whereas the legs merely made from semiconductors is treated as the conventional TED. The top and bottom surfaces of TEDs are subjected to convective heat transfer conditions while the remaining surfaces exposed to ambient are kept adiabatic. The effects of contact resistances, convective heat transfer coefficients, and TE leg heights L on TEDs' performance are studied. An increase in electrical and/or thermal contact resistance and a decrease in heat transfer coefficients are resulted in a decrease in power output P0 and conversion efficiency η. Depending on the contact resistances and convective heat transfer loads, the optimum L where a maximum Po occurs is obtained typically in the range of 1–4 mm. For TE leg size greater than optimum L and TED operating under higher convective heat transfer conditions, the composite design exhibited better power output and lower conversion efficiency compared to conventional design. The effects of interconnector lengths and cross-sectional area on the composite TED's characteristics are also investigated. An increase in a length and a decrease in a cross-sectional area of the interconnector decreases the composite TED's performance. However, based on the increase of the interconnector's electrical resistance in relation to the device's total internal resistance, the composite TED exhibited both negligible and significant change behavior in P0.


Author(s):  
Y. S. Muzychka

Recent models for laminar friction and heat transfer in non-circular ducts and channels are reviewed. Models for both hydrodynamically and thermally developing flows are presented. These models are based on the superposition of asymptotic characteristics for short and long ducts. The non-dimensional mean wall shear stress (or fRe) and non-dimensional heat transfer coefficient (or Nusselt number) are shown to be only functions the dimensionless hydrodynamic or thermal duct length, respectively, and the duct aspect ratio. This is achieved by means of using a new transversal length scale, the square root of cross-sectional area, rather than the hydraulic diameter. Additional definitions more appropriate to single fluid devices such as heat sinks are also discussed.


2017 ◽  
Vol 140 (2) ◽  
Author(s):  
Chinige Sampath Kumar ◽  
Arvind Pattamatta

An experimental study using the liquid crystal thermography technique is conducted to investigate the convective heat transfer performance in jet impingement cooling using various porous media configurations. Aluminum porous foams are used in the present study. Four impinging jet configurations are considered: jet impingement (1) without porous media, (2) over the porous heat sink, (3) with porous obstacle case, and (4) through porous passage. These configurations are evaluated on the basis of the convective heat transfer enhancement for two different Reynolds numbers of 400 and 700. Jet impingement with porous heat sink showed deterioration in the average Nusselt number by 9.95% and 18.04% compared to jet impingement without porous media configuration for Reynolds numbers of 400 and 700, respectively. Jet impingement with porous obstacles showed a very negligible enhancement in the average Nusselt number by 3.48% and 2.73% for Reynolds numbers of 400 and 700, respectively. However, jet impingement through porous passage configuration showed a maximum enhancement in the average Nusselt number by 52.71% and 74.68% and stagnation Nusselt numbers by 58.08% and 53.80% compared to the jet impingement without porous medium for Reynolds numbers of 400 and 700, respectively. Within the porous properties considered, it is observed that by decreasing the permeability and porosity the convective heat transfer performance tends to increase.


2011 ◽  
Vol 133 (2) ◽  
Author(s):  
Luis M. Candanedo ◽  
Andreas Athienitis ◽  
Kwang-Wook Park

This paper presents an experimental study for the development of convective heat transfer correlations for an open loop air-based building-integrated photovoltaic/thermal (BIPV/T) system. The BIPV/T system absorbs solar energy on the top surface, which includes the photovoltaic panels and generates electricity while also heating air drawn by a variable speed fan through a channel formed by the top roof surface with the photovoltaic modules and an insulated attic layer. The BIPV/T system channel has a length/hydraulic diameter ratio of 38, which is representative of a BIPV/T roof system for 30–45 deg tilt angles. Because of the heating asymmetry in the BIPV/T channel, two average Nusselt number correlations are reported as a function of Reynolds number: one for the top heated surface and the other for the bottom surface. For the top heated surface, the Nusselt number is in the range of 6–48 for Reynolds numbers ranging from 250 to 7500. For the bottom insulated surface, the Nusselt number is in the range of 22–68 for Reynolds numbers ranging from 800 to 7060. This paper presents correlations for the average Nusselt number as a function of Reynolds number; this correlation is considered adequate for the design of BIPV/T systems where forced convection dominates. Local Nusselt number distributions are also presented for laminar and turbulent flow conditions.


2020 ◽  
Vol 19 (1) ◽  
pp. 24
Author(s):  
A. I. Sato ◽  
C. A. C. Altemani ◽  
V. L. Scalon

This work was developed from a review of the technical literature for the thermal design of parallel plates heat sinks with uniform cross section cooled by airflow with the TISE (Top Inlet Side Exit) configuration. Due to an observed lack of agreement of the literature correlations among themselves and also with the available experimental results, numerical simulations were then performed to evaluate the forced convective heat transfer in the channels of these heat sinks with the TISE configuration. The simulations encompassed a range of heatsink airflow rates, considering distinct channel sizes and also the effect of a partial opening for the airflow entrance at the heat sink top. The obtained numerical results were employed to evaluate the average convective heat transfer coefficient inside the heatsink’s channels, based on the flow mixed mean temperature. A new empirical correlation was then proposed for the average Nusselt number as a function of the airflow Reynolds number and three dimensionless channel geometric parameters. The new correlation was compared with available experimental data.


2007 ◽  
Vol 129 (12) ◽  
pp. 1676-1685 ◽  
Author(s):  
H. S. Ahn ◽  
S. W. Lee ◽  
S. C. Lau ◽  
D. Banerjee

Turbulent forced convective mass (heat) transfer downstream of blockages with round and elongated holes in a rectangular channel was studied. The blockages and the channel had the same 12:1 (width-to-height ratio) cross section, and a distance equal to twice the channel height separated consecutive blockages. The diameter of the holes was either 0.5 or 0.75 of the height of the channel. Naphthalene sublimation experiments were conducted with four hole aspect ratios (hole-width-to-height ratios) between 1.0 and 3.4, two hole-to-channel area ratios (ratios of total hole cross-sectional area to channel cross-sectional area) of 0.2 and 0.3, and Reynolds numbers (based on the channel hydraulic diameter) of 7000 and 17,000. The effects of the hole aspect ratio, for each hole-to-channel area ratio, on the average mass (heat) transfer and the local mass (heat) transfer distribution on the exposed primary channel wall between consecutive blockages were examined. The results of the study showed that the blockages with holes caused the average mass (heat) transfer to be as high as about eight times that for fully developed turbulent flow through a smooth channel at the same mass flow rate. The elongated holes caused higher overall mass (heat) transfer and larger spanwise variation of the local mass (heat) transfer on the channel wall than round holes.


Sign in / Sign up

Export Citation Format

Share Document