Multistage Machining Process Design and Optimization Using Error Equivalence Method

Author(s):  
Shaoqiang Chen ◽  
Hui Wang ◽  
Qiang Huang

In design of a multistage machining process, process tolerance allocation at each stage and design of process layouts, in particular, the fixture layouts, should be optimized considering dimensional tolerance stackup or variation propagation. When multiple error sources contribute to the tolerance stackup, the dimensionality of the design space could be large and design solution may not be unique. One strategy is to prioritize the allocation of tolerances to different error sources at each stage through proper selection of cost functions. Considering the fact that the cost function selection can be very subjective and the knowledge regarding cost structures is very limited, we propose a hierarchical process design method using error equivalence concept to aggregate multiple error sources together. The main idea is to allocate tolerances to the aggregated error sources at each stage and then further distribute the tolerance to individual error sources through cost analysis. The advantage is two-fold: (1) limiting the impact of cost function selection within individual stages to avoid overhaul of process design caused by subtle change in cost functions, and (2) enabling the optimization of fixture layouts to reduce the overall tolerance stackup due to multiple error sources. To reduce computational load in optimizing process layouts, a computer experiment model is developed to explore a large number of process design alternatives. The robustness of the optimal tolerance is evaluated through sensitivity analysis, which provides guidance for process design. We illustrate the error-equivalence-based process design method by a multistage machining process. The results have shown that the proposed method could significantly reduce the design space and increase the design efficiency.


2016 ◽  
Vol 94 (5-8) ◽  
pp. 1689-1698 ◽  
Author(s):  
HU Weixin ◽  
Yanlong Cao ◽  
Jiangxin Yang ◽  
Hui-chao Shang ◽  
Wen-bo Wang


Aerospace ◽  
2021 ◽  
Vol 8 (2) ◽  
pp. 54
Author(s):  
Julia A. Cole ◽  
Lauren Rajauski ◽  
Andrew Loughran ◽  
Alexander Karpowicz ◽  
Stefanie Salinger

There is currently interest in the design of small electric vertical take-off and landing aircraft to alleviate ground traffic and congestion in major urban areas. To support progress in this area, a conceptual design method for single-main-rotor and lift-augmented compound electric helicopters has been developed. The design method was used to investigate the feasible design space for electric helicopters based on varying mission profiles and technology assumptions. Within the feasible design space, it was found that a crossover boundary exists as a function of cruise distance and hover time where the most efficient configuration changes from a single-main-rotor helicopter to a lift-augmented compound helicopter. In general, for longer cruise distances and shorter hover times, the lift-augmented compound helicopter is the more efficient configuration. An additional study was conducted to investigate the potential benefits of decoupling the main rotor from the tail rotor. This study showed that decoupling the main rotor and tail rotor has the potential to reduce the total mission energy required in all cases, allowing for increases in mission distances and hover times on the order of 5% for a given battery size.



2013 ◽  
Vol 371 ◽  
pp. 431-435 ◽  
Author(s):  
Claudiu Obreja ◽  
Gheorghe Stan ◽  
Lucian Adrian Mihaila ◽  
Marius Pascu

With a view of increasing the productivity on CNC machine tools one of the main solution is to reduce, as much as possible, the auxiliary time consumed with the set-up and replacement of the tools and work pieces engaged in the machining process. Reducing the total time of the tool changing process by the automatic tool changer system can be also achieved through minimizing the number of movements needed for the actual exchange of the tool, from the tool magazine to the machine spindle (the optimization of the tool changing sequences). This paper presents a new design method based on the tree-graph theory. We consider an existing automatic tool changing system, mounted on the milling and boring machining centre, and by applying the new method we obtain all the possible configurations to minimize the tool changing sequence of the automatic tool changer system. By making use of the method proposed we obtain the tool changing sequences with minimum necessary movements needed to exchange the tool. Reconfiguring an existing machine tool provided with an automatic tool changer system by making use of the proposed method leads to obtaining the smallest changing time and thus high productivity.



2014 ◽  
Vol 800-801 ◽  
pp. 203-207
Author(s):  
Zhen Bo Wang ◽  
Liang Zhang ◽  
Shu Zhi Li

This article mainly aims at the problem of silicon carbide ceramic mechanical turning difficult processing,by adopting the method of the numerical control turning processing.Design a special fixtures and a NC machining process to accomplish the manufacture of silicon carbide plate.And through the single factor analysis method to process parameters were analyzed.



2010 ◽  
Vol 1 (1) ◽  
pp. 34-39 ◽  
Author(s):  
Markus Heck ◽  
Guenter Schmidt

In this paper, the authors propose a non-linear cost function based on ecological considerations for lot-size planning. The classical approaches of lot-size optimization, the Wagner-Whitin algorithm and the Part-Period Balancing heuristic, are enhanced with so-called eco-factors. These eco-enhanced approaches combined with eco-balancing help to reduce overall production costs. Simultaneously, the environmental impact is also reduced.



2008 ◽  
Vol 43 (3) ◽  
pp. 642-670 ◽  
Author(s):  
Eugene Ndocko Ndocko ◽  
Werner Bäcker ◽  
Jochen Strube


2019 ◽  
Vol 141 ◽  
pp. 149-160 ◽  
Author(s):  
Rachel C. Evans ◽  
Esther S. Bochmann ◽  
Samuel O. Kyeremateng ◽  
Andreas Gryczke ◽  
Karl G. Wagner


2013 ◽  
Vol 339 ◽  
pp. 489-494 ◽  
Author(s):  
Ying Xiang ◽  
Rong Mo ◽  
Neng Wan ◽  
Hu Qiao

The simulation and optimization of electrochemical machining is an important means to improve processing quality. However, the fragmented nature of geometric modeling and numerical analysis model, restricts the application proportion. Aiming at this problem, it is refined that the scientific problem of coordination modeling between CAD and CAE based isogeometric method. In this paper, the unified model is established based NURBS basis functions to solve the problems that the geometric parameterization and the infliction of boundary conditions. And the optimization efficiency is promoted by improved optimization model using the convex hull characteristic of NURBS basis function. At last, a confluent design method is realized for the blade electrochemical machining process.



2011 ◽  
Vol 28 (2) ◽  
pp. 382-391 ◽  
Author(s):  
A. S. Rathore ◽  
C. Sharma ◽  
A. Persad


2010 ◽  
Vol 107 (6) ◽  
pp. 985-997 ◽  
Author(s):  
Canping Jiang ◽  
Lisa Flansburg ◽  
Sanchayita Ghose ◽  
Paul Jorjorian ◽  
Abhinav A. Shukla


Sign in / Sign up

Export Citation Format

Share Document