scholarly journals Configuration Study of Electric Helicopters for Urban Air Mobility

Aerospace ◽  
2021 ◽  
Vol 8 (2) ◽  
pp. 54
Author(s):  
Julia A. Cole ◽  
Lauren Rajauski ◽  
Andrew Loughran ◽  
Alexander Karpowicz ◽  
Stefanie Salinger

There is currently interest in the design of small electric vertical take-off and landing aircraft to alleviate ground traffic and congestion in major urban areas. To support progress in this area, a conceptual design method for single-main-rotor and lift-augmented compound electric helicopters has been developed. The design method was used to investigate the feasible design space for electric helicopters based on varying mission profiles and technology assumptions. Within the feasible design space, it was found that a crossover boundary exists as a function of cruise distance and hover time where the most efficient configuration changes from a single-main-rotor helicopter to a lift-augmented compound helicopter. In general, for longer cruise distances and shorter hover times, the lift-augmented compound helicopter is the more efficient configuration. An additional study was conducted to investigate the potential benefits of decoupling the main rotor from the tail rotor. This study showed that decoupling the main rotor and tail rotor has the potential to reduce the total mission energy required in all cases, allowing for increases in mission distances and hover times on the order of 5% for a given battery size.

2017 ◽  
Vol 68 (4) ◽  
pp. 858-863
Author(s):  
Mihaela Oprea ◽  
Marius Olteanu ◽  
Radu Teodor Ianache

Fine particulate matter with a diameter less than 2.5 �m (i.e. PM2.5) is an air pollutant of special concern for urban areas due to its potential significant negative effects on human health, especially on children and elderly people. In order to reduce these effects, new tools based on PM2.5 monitoring infrastructures tailored to specific urban regions are needed by the local and regional environmental management systems for the provision of an expert support to decision makers in air quality planning for cities and also, to inform in real time the vulnerable population when PM2.5 related air pollution episodes occur. The paper focuses on urban air pollution early warning based on PM2.5 prediction. It describes the methodology used, the prediction approach, and the experimental system developed under the ROKIDAIR project for the analysis of PM2.5 air pollution level, health impact assessment and early warning of sensitive people in the Ploiesti city. The PM2.5 concentration evolution prediction is correlated with PM2.5 air pollution and health effects analysis, and the final result is processed by the ROKIDAIR Early Warning System (EWS) and sent as a message to the affected population via email or SMS. ROKIDAIR EWS is included in the ROKIDAIR decision support system.


Atmosphere ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1377
Author(s):  
Weifang Shi ◽  
Nan Wang ◽  
Aixuan Xin ◽  
Linglan Liu ◽  
Jiaqi Hou ◽  
...  

Mitigating high air temperatures and heat waves is vital for decreasing air pollution and protecting public health. To improve understanding of microscale urban air temperature variation, this paper performed measurements of air temperature and relative humidity in a field of Wuhan City in the afternoon of hot summer days, and used path analysis and genetic support vector regression (SVR) to quantify the independent influences of land cover and humidity on air temperature variation. The path analysis shows that most effect of the land cover is mediated through relative humidity difference, more than four times as much as the direct effect, and that the direct effect of relative humidity difference is nearly six times that of land cover, even larger than the total effect of the land cover. The SVR simulation illustrates that land cover and relative humidity independently contribute 16.3% and 83.7%, on average, to the rise of the air temperature over the land without vegetation in the study site. An alternative strategy of increasing the humidity artificially is proposed to reduce high air temperatures in urban areas. The study would provide scientific support for the regulation of the microclimate and the mitigation of the high air temperature in urban areas.


2020 ◽  
Vol 10 (4) ◽  
pp. 1300 ◽  
Author(s):  
Xin Zhao ◽  
Zhou Zhou ◽  
Xiaoping Zhu ◽  
An Guo

This paper describes our work on a small, hand-launched, solar-powered unmanned aerial vehicle (UAV) suitable for low temperatures and high altitudes, which has the perpetual flight potential for conservation missions for rare animals in the plateau area in winter. Firstly, the conceptual design method of a small, solar-powered UAV based on energy balance is proposed, which is suitable for flight in high-altitude and low-temperature area. The solar irradiance model, which can reflect the geographical location and time, was used. Based on the low-temperature discharge test of the battery, a battery weight model considering the influence of low temperature on the battery performance was proposed. Secondly, this paper introduces the detailed design of solar UAV for plateau area, including layout design, structure design, load, and avionics. To increase the proportion of solar cells covered, the ailerons were removed and a rudder was used to control both roll and yaw. Then, the dynamics model of an aileron-free layout UAV was developed, and the differences in maneuverability and stability of aileron-free UAV in plateau and plain areas were analyzed. The control law and trajectory tracking control law were designed for the aileron-free UAV. Finally, the flight test was conducted in Qiangtang, Tibet, at an altitude of 4500 m, China’s first solar-powered UAV to take off and land above 4500 m on the plateau in winter (−30 °C). The test data showed the success of the scheme, validated the conceptual design method and the success of the control system for aileron-free UAV, and analyzed the feasibility of perpetual flight carrying different loads according to the flight energy consumption data.


2015 ◽  
Vol 761 ◽  
pp. 63-67 ◽  
Author(s):  
Muhd Ridzuan Mansor ◽  
S.M. Sapuan ◽  
A. Hambali ◽  
Edi Syam Zainudin ◽  
A.A. Nuraini

Spoilers are part of an automotive exterior bodywork system that acts to create additional down force for higher traction. In this paper, a new conceptual design of automotive spoiler component using kenaf polymer composites was developed using integrated TRIZ and morphology chart design method. The aim is to enable direct application of kenaf polymer composites to the spoiler design to achieve better environmental performance of the component while maintaining the required structural strength for safe and functional operation. The overall process involved two major stages, which are the idea generation and concept development. TRIZ method was applied in the idea generation stage where specific solution strategies for the design were created. In the concept development stage, the specific TRIZ solution strategies obtained were later refined into relevant alternative system elements using Morphology chart method. Finally, a new conceptual design of an automotive spoiler was developed using the combination of the identified system elements. The integrated TRIZ and morphology chart method were found to be new tools that can be used effectively in the concept design stage, especially in cases where direct material substitution is given the main focus for the new product development.


2015 ◽  
Vol 40 (4) ◽  
pp. 50-54
Author(s):  
Yin Pan ◽  
Tiejun Zhou

Due to the rapid urbanization in China, the living environment in urban areas improves considerably, while that in rural settlements does not improve remarkably, or even worsens. The purpose of the research is to propose an organizational approach to the improvement of the living environment in the poverty-stricken rural settlements and an architectural design pattern under a variety of requirements in the context of China’s rapid urbanization and socio-economic development in the redevelopment of rural settlements in Yongsheng Village, Lizhuang Town, Yibin City of Sichuan Province in Southwest China. In this redevelopment project, the architects, as the important third party, are not just architects in the traditional sense in that they are involved in the organizational process and architectural design throughout the whole project. The redevelopment project has been completed, and is aimed at providing a scientific redevelopment model and a design method for other rural residents by guiding them in the improvement of their living environment under a variety of restrictions.


Author(s):  
Marise Barreiros Horta ◽  
Maria Inês Cabral ◽  
Iva Pires ◽  
Laura Salles Bachi ◽  
Ana Luz ◽  
...  

By integrating social, ecological, and economic perspectives, the assessment of ecosystem services (ES) provides valuable information for better targeting landscape planning and governance. This chapter summarizes different participatory approaches for assessing ES in urban areas of three countries. In Belo Horizonte (Brazil), a conceptual framework for the vacant lots ES assessment is presented as an attempt to integrate landscape, social, and political dimensions. In Leipzig (Germany), a combination of site surveys, interviews, and remote sensing provides a valuable data set that fostered a comparative study between two forms of urban gardening. In Lisbon (Portugal), the study is based on interviews that offer a social insight into the horticultural parks situation, which in turn demands a better dialogue with the municipality. In general, the studies demonstrate the potential benefits of utilizing the ES assessment approaches on urban landscapes, especially for better understanding the interactions between people and nature in urban sites.


2018 ◽  
Vol 37 (9) ◽  
pp. 904-925 ◽  
Author(s):  
Jonas Lundberg ◽  
Mattias Arvola ◽  
Carl Westin ◽  
Stefan Holmlid ◽  
Mathias Nordvall ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document