Application of OLI Electrolyte Simulation to the Resolution of Corrosion Concerns Within a Reciprocating Compressor
A 38 MMSCF/D Cooper Bessemer Model LM-9 reciprocating compressor in hydrogen service at the Praxair Westlake LA facility has experienced notable particulate contamination within the feed gas. The particulates were believed to be caused by upstream piping corrosion; however, to definitely state the cause, the properties of the fluid existing in the five-stage compressor needed to be more fully understood. An OLI electrochemical simulation software was used for dew point prediction, determination of the condensed phase ionic equilibria, and corrosion rate prediction. These tasks were beyond capabilities of the site-licensed UniSim software, as presently configured. Specifically, the model was used to identify the dew point conditions (temperature, pressure) and properties of the condensed water (pH, corrosivity, dissolved O2, and chlorine speciation). Model results were compared with site inspection findings. Subsequently, recommended limits for chlorine and oxygen in the feed gas were established to improve long term compressor reliability.