Verification of a Novel Position Verification Sensor to Identify and Isolate Robot Workcell Health Degradation

Author(s):  
Brian A. Weiss ◽  
Jared Kaplan

Abstract Manufacturing processes have become increasingly sophisticated leading to greater usage of robotics. Sustaining successful manufacturing robotic operations requires a strategic maintenance program. Maintenance can be very costly, especially when some manufacturers unnecessarily spend resources (i.e., time, money) to maintain their equipment. To reduce maintenance costs, manufacturers are exploring how they can assess the health of their robot workcell operations to enhance their maintenance strategies. Effective health assessment relies upon capturing appropriate data and generating intelligence from the workcell. Multiple data streams relevant to a robot workcell may be available including robot controller data, a supervisory programmable logic controller data, maintenance logs, process/part quality data, and equipment/process fault and/or failure data. This data can be extremely informative, yet the extreme volume and complexity of this data can be both overwhelming, confusing, and paralyzing. Researchers at the National Institute of Standards and Technology have developed a test method and companion sensor to assess the health of robot workcells, which will yield an additional and unique data stream. The intent is that this data stream can either serve as a surrogate for larger data volumes to reduce the data collection and analysis burden on the manufacturer or add more intelligence to assessing robot workcell health. This article will present the immediate effort focused on verifying the companion sensor. Results of the verification test process are discussed along with preliminary results of the sensor’s performance during verification testing.

2020 ◽  
Vol 143 (4) ◽  
Author(s):  
Brian A. Weiss ◽  
Jared Kaplan

Abstract Manufacturing processes have become increasingly sophisticated leading to greater usage of robotics. Sustaining successful manufacturing robotic operations requires a strategic maintenance program. Without careful planning, maintenance can be very costly. To reduce maintenance costs, manufacturers are exploring how they can assess the health of their robot workcell operations to enhance their maintenance strategies. Effective health assessment relies upon capturing appropriate data and generating intelligence from the workcell. Multiple data streams relevant to a robot workcell may be available including robot controller data, a supervisory programmable logic controller data, maintenance logs, process and part quality data, and equipment and process fault and failure data. These data streams can be extremely informative, yet the massive volume and complexity of this data can be overwhelming, confusing, and sometimes paralyzing. Researchers at the National Institute of Standards and Technology have developed a test method and companion sensor to assess the health of robot workcells which will yield an additional and unique data stream. The intent is that this data stream can either serve as a surrogate for larger data volumes to reduce the data collection and analysis burden on the manufacturer, or add more intelligence to assessing robot workcell health. This article presents the most recent effort focused on verifying the companion sensor. Results of the verification test process are discussed along with preliminary results of the sensor’s performance during verification testing. Lessons learned indicate that the test process can be an effective means of quantifying the sensor’s measurement capability particularly after test process anomalies are addressed in future efforts.


2019 ◽  
Author(s):  
Fiona Pye ◽  
Nussaȉbah B Raja ◽  
Bryan Shirley ◽  
Ádám T Kocsis ◽  
Niklas Hohmann ◽  
...  

In a world where an increasing number of resources are hidden behind paywalls and monthly subscriptions, it is becoming crucial for the scientific community to invest energy into freely available, community-maintained systems. Open-source software projects offer a solution, with freely available code which users can utilise and modify, under an open source licence. In addition to software accessibility and methodological repeatability, this also enables and encourages the development of new tools. As palaeontology moves towards data driven methodologies, it is becoming more important to acquire and provide high quality data through reproducible systematic procedures. Within the field of morphometrics, it is vital to adopt digital methods that help mitigate human bias from data collection. In addition,m mathematically founded approaches can reduce subjective decisions which plague classical data. This can be further developed through automation, which increases the efficiency of data collection and analysis. With these concepts in mind, we introduce two open-source shape analysis software, that arose from projects within the medical imaging field. These are ImageJ, an image processing program with batch processing features, and 3DSlicer which focuses on 3D informatics and visualisation. They are easily extensible using common programming languages, with 3DSlicer containing an internal python interactor, and ImageJ allowing the incorporation of several programming languages within its interface alongside its own simplified macro language. Additional features created by other users are readily available, on GitHub or through the software itself. In the examples presented, an ImageJ plugin “FossilJ” has been developed which provides semi-automated morphometric bivalve data collection. 3DSlicer is used with the extension SPHARM-PDM, applied to synchrotron scans of coniform conodonts for comparative morphometrics, for which small assistant tools have been created.


Author(s):  
Alex Davila-Frias ◽  
Val Marinov ◽  
Om Prakash Yadav ◽  
Yuriy Atanasov

Abstract Accelerated life testing (ALT) has been a common choice to study the effects of environmental stresses on flexible hybrid electronics (FHE), a promising technology to produce flexible electronic devices. Nevertheless, accelerated degradation testing (ADT) has proven to be a more effective approach, which does not require failure occurrences, allowing shorter testing times. Since FHE devices are expected to be highly reliable, ADT provides useful information in the form of degradation data for further analysis without actual failure data. In this paper, we present the design and experimental setup of ADT for FHE considering two stress factors simultaneously. We use daisy-chain resistance as a measurable degradation characteristic to periodically monitor the degradation of FHE products under accelerated stress conditions. Two stress factors, temperature and humidity, are considered and ADT was carried out considering four combinations of temperature and humidity simultaneously. Failure analysis was performed on failed units to investigate the failure process and location of the failure. The ADT data was used to fit in the appropriate mathematical degradation model representing the failure process. The data analysis showed faster degradation paths for higher stress combinations. Finally, we present insights and further research opportunities to expand the work.


Author(s):  
Guixiu Qiao ◽  
Brian A. Weiss

Robot accuracy degradation sensing, monitoring, and assessment are critical activities in many industrial robot applications, especially when it comes to the high accuracy operations which may include welding, material removal, robotic drilling, and robot riveting. The degradation of robot tool center accuracy can increase the likelihood of unexpected shutdowns and decrease manufacturing quality and production efficiency. The development of monitoring, diagnostic and prognostic (collectively known as prognostics and health management (PHM)) technologies can aid manufacturers in maintaining the performance of robot systems. PHM can provide the techniques and tools to support the specification of a robot’s present and future health state and optimization of maintenance strategies. This paper presents the robotic PHM research and the development of a quick health assessment at the U.S. National Institute of Standards and Technology (NIST). The research effort includes the advanced sensing development to measure the robot tool center position and orientation; a test method to generate a robot motion plan; an advanced robot error model that handles the geometric/nongeometric errors and the uncertainties of the measurement system, and algorithms to process measured data to assess the robot’s accuracy degradation. The algorithm has no concept of the traditional derivative or gradient for algorithm converging. A use case is presented to demonstrate the feasibility of the methodology.


2019 ◽  
Author(s):  
Fiona Pye ◽  
Nussaȉbah B Raja ◽  
Bryan Shirley ◽  
Ádám T Kocsis ◽  
Niklas Hohmann ◽  
...  

In a world where an increasing number of resources are hidden behind paywalls and monthly subscriptions, it is becoming crucial for the scientific community to invest energy into freely available, community-maintained systems. Open-source software projects offer a solution, with freely available code which users can utilise and modify, under an open source licence. In addition to software accessibility and methodological repeatability, this also enables and encourages the development of new tools. As palaeontology moves towards data driven methodologies, it is becoming more important to acquire and provide high quality data through reproducible systematic procedures. Within the field of morphometrics, it is vital to adopt digital methods that help mitigate human bias from data collection. In addition, mathematically founded approaches can reduce subjective decisions which plague classical data. This can be further developed through automation, which increases the efficiency of data collection and analysis. With these concepts in mind, we introduce two open-source shape analysis software, that arose from projects within the medical imaging field. These are ImageJ, an image processing program with batch processing features, and 3D Slicer which focuses on 3D informatics and visualisation. They are easily extensible using common programming languages, with 3D Slicer containing an internal python interactor, and ImageJ allowing the incorporation of several programming languages within its interface alongside its own simplified macro language. Additional features created by other users are readily available, on GitHub or through the software itself. In the examples presented, an ImageJ plugin “FossilJ” has been developed which provides semi-automated morphometric bivalve data collection. 3D Slicer is used with the extension SPHARM-PDM, applied to synchrotron scans of coniform conodonts for comparative morphometrics, for which small assistant tools have been created in Python.


Sign in / Sign up

Export Citation Format

Share Document