Ultra-Precision Machining Technology of the Soft and Brittle Functional Crystal

Author(s):  
C. P. Lu ◽  
H. Gao ◽  
R. K. Kang ◽  
X. J. Teng ◽  
Q. G. Wang

As an important branch of materials, soft and brittle functional crystals (SBFC) are widely used in the field of modern technology. However, the softness, brittleness, deliquescence, and strongly anisotropic natures of these materials present a challenge for their ultra-precision machining. The definition of SBFC is firstly given and their applications in many fields are also presented. For the ultra-precision machining technologies to satisfy the applied requirements, many methods such as single diamond turning, ultra-precision grinding, magnetorheological Finishing and so on, are successfully applied in SBFC materials, the challenges and difficulties occurred during machining these SBFC materials, such as KH2PO4, CdZnTe and CaF2, etc., are reviewed and the limits are also analyzed in detail. Moreover, many novel machining methods are suggested to achieve better surface quality and enhance machining efficiency.

2014 ◽  
Vol 687-691 ◽  
pp. 476-479 ◽  
Author(s):  
Ya Ping Fan

Ultra-precision machining technology is adapt to the development of modern technology a new technology of mechanical processing, the new achievement of the development of the integrated application of the mechanical technology and modern electronic technology, measurement technology and computer technology in advanced control, testing method, etc., makes a further improve the precision of machining. At present the increasing maturity of the ultra precision machining, has formed a series, it include ultra precision cutting, super precision grinding and super precision grinding and super precision special processing, etc. Ultra-precision machining to high precision, high efficiency, large-scale, miniaturization, intelligent, process integration, the integration of online processing detection, such as green direction.


2011 ◽  
Vol 487 ◽  
pp. 303-307
Author(s):  
Jia Liang Guan ◽  
H.W. Lu ◽  
X.H. Xiao ◽  
Y.C. Wu ◽  
Z.D. Chen

A new way of precision machining was studied through the experiments of Electrolytic In-Process Dressing (ELID) precision grinding and ultra precision lapping and polishing for W-Mo metal alloy. First a 22nm(Ra) surface was obtained through the ELID grinding, last a 11nm(Ra) surface was obtained after the process of lapping and polishing with 0.1~0.3 N/cm2pressure, 60~100 r/min rotational speed and other optimized parameters. Meanwhile, the formation mechanism of ultra precision mirror surface of the alloy was also analyzed. The experiments prove surface quality of the work piece was guaranteed by ELID grinding, and which was also greatly affected by some parameters in lapping and polishing such as pressure, rotational speed.


2007 ◽  
Vol 364-366 ◽  
pp. 297-301 ◽  
Author(s):  
Jing He Wang ◽  
Ming Jun Chen ◽  
Shen Dong ◽  
Shi Qian Wang

In the ultra-precision machining of KDP crystal, there are many factors affecting the surface quality[1-3]. The experiments show that the rake angle and back angle of the tool have significant effects on machined surface roughness. Therefore, an efficient way to improve the surface roughness is to select a proper negative rake angle. In this study, the ANSYS static analysis method was employed to analyze the stress field distribution within the whole cutting region. A finite element simulation model was set up to calculate the residual stresses variation with tool’s angles, which can be considered to select optimal rake and back angles in the ultra-precision machining of KDP crystal. Results show that the optimal tool rake angle and back angle are -49° and 7°, respectively. Finally, by using different tool angles to process KDP crystal and utilizing AFM to analyze the surface roughness, it can be found that the measurement results agree well with what are deduced from theoretical calculation.


2010 ◽  
Vol 135 ◽  
pp. 134-138 ◽  
Author(s):  
Shao Hui Yin ◽  
Heng Ning Tang ◽  
Jian Wu Yu ◽  
Kun Tang ◽  
Feng Jun Chen ◽  
...  

This paper deals with one-point parallel grinding and magnetorheological finishing (MRF) polishing of micro glass lens mould. Firstly,the analysis and experiment of one-point parallel grinding are conducted on micro-aspheric mould with 10mm in diameter , after grinding ,the results show that the form accuracy of the micro aspheric mould are 2.538 μm in PVand 0.645 μm in RMS, also the subsurface damages and residual grinding marks are left ;And then , the magnetorheological finishing experiment is counducted, the form accuracy achieves 0.892 μm in PV and 0.287 μm in RMS ,after finishing, the surface quality was improved.


2013 ◽  
Vol 552 ◽  
pp. 201-206
Author(s):  
Su Juan Wang ◽  
Suet To ◽  
Xin Du Chen

The technology of ultra-precision machining with single crystal diamond tool produces advanced components with higher dimensional accuracy and better surface quality. The cutting-induced heat results in high temperature and stress at the chip-tool and tool-workpiece interfaces therefore affects the materials and the cutting tool as well as the surface quality. In the ultra-precision machining of al6061, the cutting-induced heat generates precipitates on the machined surface and those precipitates induce imperfections on the machined surface. This paper uses the time-temperature-precipitation characteristics of aluminum alloy 6061 (al6061) to investigate the effect of feed rate on the cutting-induced heat generation in ultra-precision multi-axis milling process. The effect of feed rate and feed direction on the generation of precipitates and surface roughness in ultra-precision raster milling (UPRM) is studied. Experimental results show that heat generation in horizontal cutting is less than that in vertical cutting and a larger feed rate generates more heat on the machined workpiece. A smaller feed rate produces a better surface finish and under a larger feed rate, scratch marks are produced by the generated precipitates and increase surface roughness.


2004 ◽  
Vol 471-472 ◽  
pp. 816-820
Author(s):  
Yong Da Yan ◽  
Shen Dong ◽  
T. Sun

This study aimed to gain an in-depth understanding of the features of AFM micro probe nanomachining. With the aid of the orthogonal test analysis and synthesis method of point rating, factors of influencing the cutting process: the perpendicular load, the feed amount and the cutting speed, were analyzed. The study revealed that the feed amount and the perpendicular load had greater effect on the surface quality and machining efficiency than the cutting speed. The results were also compared with the conventional ultra-precision machining. The optimal machining parameters suitable for two application fields were achieved. This method is a novel and feasible method to perform the nanomachining.


Sign in / Sign up

Export Citation Format

Share Document