Bending Stiffness of a Double-Layered Graphene Sheet Using a Geometrically-Based Analytical Approach

Author(s):  
K. Behfar ◽  
R. Naghdabadi

In this article, the bending stiffness of a double-layered graphene sheet is investigated using a geometrically-based analytical approach. The analysis is based on the van der Waals interactions of atoms belonging to two neighboring sheets. The inter-atomic spacing between the adjacent layers is geometrically determined when the sheet is applied by a couple of moments in the opposite sides. The bending potential energy is obtained by summing up the potentials at discrete hexagons over the length and width of the sheet. It is observed that the bending stiffness of a double-layered graphene sheet does not depend on the length of the sheet and be a material property for the associated sheet.

2016 ◽  
Vol 18 (4) ◽  
pp. 3011-3022 ◽  
Author(s):  
Yu-Ting Chen ◽  
Kerwin Hui ◽  
Jeng-Da Chai

We investigate the potential energy curves of rare-gas dimers with various ranges and strengths of interparticle interactions (nuclear–electron, electron–electron, and nuclear–nuclear interactions).


2012 ◽  
Vol 2012 ◽  
pp. 1-7
Author(s):  
Faina Dubnikova ◽  
Assa Lifshitz

Potential energy surfaces for three unimolecular elimination reactions: , , and were calculated using a variety of quantum chemical methods. It was shown that, in all the three cases, the transition state in the first step of the reaction leads to the production of the complex intermediates based on van der Waals interactions. In addition to the fact that the three complexes appear as intermediates on the potential energy surfaces, which means that they are not free entities, the entropy values of the two elimination products are far above those of the complexes due to their additional Sackur-Tetrode entropy. Moreover, the three vibrational frequencies of the H2O group in the (CH3)3COH complex and the H–Cl and H–F stretch frequencies in CH3CF3 and CH3CH2CH2Cl are quite different (see the various tables). The energy levels of the complexes were found to be below those of the corresponding decomposition products. Rate constants for the elimination processes were calculated from the potential energy surfaces using transition-state theory and were compared to available experimental data.


2000 ◽  
Vol 65 (12) ◽  
pp. 1950-1958 ◽  
Author(s):  
Michal Hušák ◽  
Bohumil Kratochvíl ◽  
Ivana Císařová ◽  
Alexandr Jegorov

Two isomorphous clathrates formed by dihydrocyclosporin A or cyclosporin V with tert-butyl methyl ether are reported and compared with the structures of related P21-symmetry cyclosporin clathrates. The cyclosporin molecules in both structures are associated via van der Waals interactions forming cavities occupied by solvent molecules (cyclosporin : tert-butyl methyl ether is 1 : 2).


2021 ◽  
Vol 154 (12) ◽  
pp. 124306
Author(s):  
Tao Lu ◽  
Daniel A. Obenchain ◽  
Jiaqi Zhang ◽  
Jens-Uwe Grabow ◽  
Gang Feng

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Woonbae Sohn ◽  
Ki Chang Kwon ◽  
Jun Min Suh ◽  
Tae Hyung Lee ◽  
Kwang Chul Roh ◽  
...  

AbstractTwo-dimensional MoS2 film can grow on oxide substrates including Al2O3 and SiO2. However, it cannot grow usually on non-oxide substrates such as a bare Si wafer using chemical vapor deposition. To address this issue, we prepared as-synthesized and transferred MoS2 (AS-MoS2 and TR-MoS2) films on SiO2/Si substrates and studied the effect of the SiO2 layer on the atomic and electronic structure of the MoS2 films using spherical aberration-corrected scanning transition electron microscopy (STEM) and electron energy loss spectroscopy (EELS). The interlayer distance between MoS2 layers film showed a change at the AS-MoS2/SiO2 interface, which is attributed to the formation of S–O chemical bonding at the interface, whereas the TR-MoS2/SiO2 interface showed only van der Waals interactions. Through STEM and EELS studies, we confirmed that there exists a bonding state in addition to the van der Waals force, which is the dominant interaction between MoS2 and SiO2. The formation of S–O bonding at the AS-MoS2/SiO2 interface layer suggests that the sulfur atoms at the termination layer in the MoS2 films are bonded to the oxygen atoms of the SiO2 layer during chemical vapor deposition. Our results indicate that the S–O bonding feature promotes the growth of MoS2 thin films on oxide growth templates.


2019 ◽  
Vol 3 (7) ◽  
pp. 1462-1470 ◽  
Author(s):  
Weiwei Wei ◽  
Rohit L. Vekariy ◽  
Chuanting You ◽  
Yafei He ◽  
Ping Liu ◽  
...  

Highly dense thin films assembled from cellulose nanofibers and reduced graphene oxide via van der Waals interactions to realize ultrahigh volumetric double-layer capacitances.


2021 ◽  
Vol 167 ◽  
pp. 106804
Author(s):  
C. Weber ◽  
P. Knüpfer ◽  
M. Buchmann ◽  
M. Rudolph ◽  
U.A. Peuker

Sign in / Sign up

Export Citation Format

Share Document