Van der Waals interactions and oscillatory behaviour of carbon onions interacting with a fully constrained graphene sheet

2021 ◽  
Vol 44 (1) ◽  
Author(s):  
F Sadeghi ◽  
R Ansari
Author(s):  
K. Behfar ◽  
R. Naghdabadi

In this article, the bending stiffness of a double-layered graphene sheet is investigated using a geometrically-based analytical approach. The analysis is based on the van der Waals interactions of atoms belonging to two neighboring sheets. The inter-atomic spacing between the adjacent layers is geometrically determined when the sheet is applied by a couple of moments in the opposite sides. The bending potential energy is obtained by summing up the potentials at discrete hexagons over the length and width of the sheet. It is observed that the bending stiffness of a double-layered graphene sheet does not depend on the length of the sheet and be a material property for the associated sheet.


Author(s):  
F. Sadeghi ◽  
R. Ansari

On the basis of the continuum approximation along with Lennard–Jones potential function, new semi-analytical expressions are presented to evaluate the van der Waals interactions between an ellipsoidal fullerene and a semi-infinite single-walled carbon nanotube. Using direct method, these expressions are also extended to model ellipsoidal carbon onions inside multiwalled carbon nanotubes. In addition, acceptance and suction energies which are two noticeable issues for medical applications such as drug delivery are determined. Neglecting the frictional effects and by imposing some simplifying assumptions on the van der Waals interaction force, a simple formula is given to evaluate the oscillation frequency of ellipsoidal carbon onions inside multiwalled carbon nanotubes. Also, the effects of the number of tube shells and ellipsoidal carbon onion shells on the oscillatory behavior are examined. It is shown that there exists an optimal value for the number of tube shells beyond which the oscillation frequency remains unchanged.


2000 ◽  
Vol 65 (12) ◽  
pp. 1950-1958 ◽  
Author(s):  
Michal Hušák ◽  
Bohumil Kratochvíl ◽  
Ivana Císařová ◽  
Alexandr Jegorov

Two isomorphous clathrates formed by dihydrocyclosporin A or cyclosporin V with tert-butyl methyl ether are reported and compared with the structures of related P21-symmetry cyclosporin clathrates. The cyclosporin molecules in both structures are associated via van der Waals interactions forming cavities occupied by solvent molecules (cyclosporin : tert-butyl methyl ether is 1 : 2).


2021 ◽  
Vol 154 (12) ◽  
pp. 124306
Author(s):  
Tao Lu ◽  
Daniel A. Obenchain ◽  
Jiaqi Zhang ◽  
Jens-Uwe Grabow ◽  
Gang Feng

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Woonbae Sohn ◽  
Ki Chang Kwon ◽  
Jun Min Suh ◽  
Tae Hyung Lee ◽  
Kwang Chul Roh ◽  
...  

AbstractTwo-dimensional MoS2 film can grow on oxide substrates including Al2O3 and SiO2. However, it cannot grow usually on non-oxide substrates such as a bare Si wafer using chemical vapor deposition. To address this issue, we prepared as-synthesized and transferred MoS2 (AS-MoS2 and TR-MoS2) films on SiO2/Si substrates and studied the effect of the SiO2 layer on the atomic and electronic structure of the MoS2 films using spherical aberration-corrected scanning transition electron microscopy (STEM) and electron energy loss spectroscopy (EELS). The interlayer distance between MoS2 layers film showed a change at the AS-MoS2/SiO2 interface, which is attributed to the formation of S–O chemical bonding at the interface, whereas the TR-MoS2/SiO2 interface showed only van der Waals interactions. Through STEM and EELS studies, we confirmed that there exists a bonding state in addition to the van der Waals force, which is the dominant interaction between MoS2 and SiO2. The formation of S–O bonding at the AS-MoS2/SiO2 interface layer suggests that the sulfur atoms at the termination layer in the MoS2 films are bonded to the oxygen atoms of the SiO2 layer during chemical vapor deposition. Our results indicate that the S–O bonding feature promotes the growth of MoS2 thin films on oxide growth templates.


2019 ◽  
Vol 3 (7) ◽  
pp. 1462-1470 ◽  
Author(s):  
Weiwei Wei ◽  
Rohit L. Vekariy ◽  
Chuanting You ◽  
Yafei He ◽  
Ping Liu ◽  
...  

Highly dense thin films assembled from cellulose nanofibers and reduced graphene oxide via van der Waals interactions to realize ultrahigh volumetric double-layer capacitances.


2021 ◽  
Vol 167 ◽  
pp. 106804
Author(s):  
C. Weber ◽  
P. Knüpfer ◽  
M. Buchmann ◽  
M. Rudolph ◽  
U.A. Peuker

2012 ◽  
Vol 68 (6) ◽  
pp. o1923-o1923
Author(s):  
Ju Liu ◽  
Zhi-Qiang Cai ◽  
Yang Wang ◽  
Yu-Li Sang ◽  
Li-Feng Xu

In the title compound, C25H13Cl2F4N3, there are four planar systems, viz. three benzene rings and a pyrazolo[1,5-a]pyrimidine system [r.m.s. deviation = 0.002 Å]. The dihedral angle between the dichlorophenyl ring and the unsubstituted phenyl ring is 69.95 (5)°, while that between the fluorophenyl ring and the unsubstituted phenyl ring is 7.97 (10)°. The crystal packing is dominated by van der Waals interactions. A Cl...Cl interaction of 3.475 (3) Å also occurs.


Sign in / Sign up

Export Citation Format

Share Document