Deterministic and Probabilistic Fracture Mechanics Analysis of Pipeline Weld Flaws Accounting for Crack Tip Constraint Effects

Author(s):  
Jens P. Tronskar ◽  
Zhang Li

The acceptability of weld defects during line pipe manufacture and pipeline construction is governed by international codes and standards such as the DNV OS-F101 or API1104. These are universal standards applicable for a wide range of pipeline usage conditions, which include typical workmanship criteria for flaw acceptance. It is, however, possible to establish more precise and often less conservative acceptance criteria using a Fitness-For-Service (FFS) approach through the application of procedures such as those of BS 7910. These are based on applying deterministic or probabilistic fracture mechanics principles on specific loading, materials and toughness properties and service conditions of a pipeline. This paper describes the conventional assessment methodology and more advanced approaches to account for crack tip constraint, dynamic loading due to VIV associated with free-spans. The paper highlights two cases as examples where the approaches have been applied for assessing the criticality of weld defects detected during pipeline construction and their impact on the reliability during service.

Author(s):  
Jens P. Tronskar

Revision 4 of the British Energy R6 document: “Assessment of the integrity of structures containing defects” provides methods to allow for loss of crack tip constraint for shallow weld flaws. The document also provides methods to estimate upper-bound values of the through thickness residual stress distribution for a range of common weld joint configurations. The present paper presents results of analyses where approaches to modify the R6 Option 1 or 2 failure assessment diagrams (FADs) for loss of crack tip constraint pertaining to primary and non-uniform residual stress have been applied. The modified FAD were formulated for probabilistic fracture mechanics analyses of semi-elliptical surface cracks located at transverse deck welds of Floating Production, Storage and Off-loading (FPSO) vessels designed to operate in the North Sea. The objective was to study the influence on the failure probability of modifying the FAD for constraint and allowing for non-uniform residual stress. Another objective was to study the influence of constraint correction on the combined fatigue and fracture failure probability for the vessels subjected to wave loading. Material and weld tensile properties and fracture toughness distributions for input to the probabilistic fracture mechanics analyses were obtained from testing of welded panels prepared using welding procedures for actual FPSO fabrication. The loading conditions were derived based on North Sea wave data pertaining to the offshore field where the FPSO is operating. The stresses were obtained from global FE analysis and fitted Weibull long-term and extreme value distributions. The results of the analyses demonstrate clearly the importance of correcting for crack tip constraint pertaining to both primary and secondary stress and to allow for non-uniform residual stress for shallow surface flaws of known crack heights. However, in combination with fatigue crack growth the effects become less prominent as the failure probability is governed by the uncertainty in the parameters of the crack growth relationship and the long-term stress distribution.


Author(s):  
Dieter Siegele ◽  
Igor Varfolomeyev ◽  
Kim Wallin ◽  
Gerhard Nagel

Within the framework of the European research project VOCALIST, centre cracked tension, CC(T), specimens made of an RPV steel were tested and analysed to quantify the influence of local stress state on fracture toughness. The CC(T) specimens demonstrate a significant loss of crack tip constraint resulting in a considerable increase in fracture toughness as compared to standard fracture mechanics specimens. So, the master curve reference temperature, To, determined on the basis of CC(T) tests performed in this study is about 43°C lower than To obtained on standard C(T) specimens. Finite element analyses of the tests revealed that the above experimental finding is in a good agreement with the empirical correlations between the reference temperature shift and the crack tip constraint as characterised by the T-stress or Q parameter (Wallin, 2001; Wallin, 2004). The results of this work are consistent with a number of other tests performed within the VOCALIST project and contribute to the validation of engineering methods for the crack assessment in components taking account of constraint.


2016 ◽  
Vol 119 ◽  
pp. 320-332 ◽  
Author(s):  
Lianyong Xu ◽  
Xingfu Zhang ◽  
Lei Zhao ◽  
Yongdian Han ◽  
Hongyang Jing

2014 ◽  
Vol 137 (1) ◽  
Author(s):  
Guian Qian ◽  
Markus Niffenegger

The integrity of a reactor pressure vessel (RPV) related to pressurized thermal shocks (PTSs) has been extensively studied. This paper introduces the method of using fracture mechanics for the integrity analysis of a RPV subjected to PTS transients. A 3-D finite element (FE) model is used to perform thermal and fracture mechanics analyses by considering both elastic and elastic–plastic material models. The results show that the linear elastic analysis leads to a more conservative result than the elastic–plastic analysis. The variation of the T-stress and Q-stress (crack tip constraint loss) of a surface crack in a RPV subjected to PTSs is studied. A shallow crack is assumed in the RPV and the corresponding constraint effect on fracture toughness of the material is quantified by the K–T method. The safety margin of the RPV is larger based on the K–T approach than based only on the K approach. The J–Q method with the modified boundary layer formulation (MBL) is used for the crack tip constraint analysis by considering elastic–plastic material properties. For all transient times, the real stress is lower than that calculated from small scale yielding (SSY) due to the loss of crack tip constraint.


Author(s):  
Sebastian Cravero ◽  
Richard E. Bravo ◽  
Hugo A. Ernst

Under certain conditions, pipelines may be submitted to biaxial loading situations. In these cases, questions arise about how biaxial loading influence the driving force (i.e.: CTOD, J-integral) of possible presented cracks and how affects the material fracture toughness. For further understanding of biaxial loading effects on fracture mechanics behavior of cracked pipelines, this work presents a numerical analysis of crack-tip constraint of circumferentially surface cracked pipes and SENT specimens using full 3D nonlinear computations. The objective is to examine combined loading effects on the correlation of fracture behavior for the analyzed cracked configurations. The constraint study using the J-Q methodology and the h parameter gives information about the fracture specimen that best represents the crack-tip conditions on circumferentially flawed pipes under combined loads. Additionally, simulations of ductile tearing in a surface cracked plate under biaxial loading using the computational cell methodology demonstrate the negligible effect of biaxial loadings on resistance curves.


Sign in / Sign up

Export Citation Format

Share Document