A New Approach of Piping Dynamic Response Considering Plastic Effect

Author(s):  
Yanping Yao ◽  
Ming-Wan Lu ◽  
Xiong Zhang

Dynamic response of piping system is significantly affected by plastic deformation. Based on the behavior classification of the pipe subjected to a steady axial force and a cyclic bending moment, the absorbed energy per semi-cycle due to plasticity is calculated for different elasto-plastic behavior. A new efficient piping dynamic response analysis method, plastic dissipation equivalent damping method, is proposed to consider the plastic effect on the basis of equivalence principle of energy dissipation. The proposed scheme is implemented in the finite element analysis code FEAP by introducing the equivalent damping which causes the same energy loss per semi-cycle. Numerical examples indicate that the results obtained by the present method show good agreements with those of elasto-plastic FEM analysis, and that this method can reduce the required computational effort significantly.

Author(s):  
Makoto Tanabe ◽  
Hajime Wakui ◽  
Nobuyuki Matsumoto

Abstract A finite element formulation to solve the dynamic behavior of high-speed Shinkansen cars, rail, and bridge is given. A mechanical model to express the interaction between wheel and rail is described, in which the impact of the rail on the flange of wheel is also considered. The bridge is modeled by using various finite elements such as shell, beam, solid, spring, and mass. The equations of motions of bridge and Shinkansen cars are solved under the constitutive and constraint equations to express the interaction between rail and wheel. Numerical method based on a modal transformation to get the dynamic response effectively is discussed. A finite element program for the dynamic response analysis of Shinkansen cars, rail, and bridge at the high-speed running has been developed. Numerical examples are also demonstrated.


2019 ◽  
Vol 36 (3) ◽  
pp. 958-970 ◽  
Author(s):  
Zhi Ding ◽  
Danwei Li

PurposeThis paper aims to evaluate the dynamic response of surrounding foundation and study the vibration characteristics of track system.Design/methodology/approachA double-line underground coupling analysis model was established, which included two moving train, track, liner and the ground field.FindingsBased on the 2.5D (D is diameter) finite element analysis, the influence of the important factors such as the depth of the subway tunnel, the nature of the foundation soil, the relative position relation of the double tunnel, the subway driving speed on the foundation and the orbital vibration are analyzed in this article.Originality/valueThe results in paper may have reference value for the prediction of train induced vibrations and for the research of dynamic response of ground field.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Yinhui Wang ◽  
Yidong Xu ◽  
Zheng Luo ◽  
Haijun Wu ◽  
Liangliang Yan

According to the flexural and torsional characteristics of curved thin-walled box girder with the effect of initial curvature, 7 basic displacements of curved box girder are determined. And then the strain-displacement calculation correlations were established. Under the curvilinear coordinate system, a three-noded curved girder finite element which has 7 degrees of freedom per node for the vibration characteristic and dynamic response analysis of curved box girder is constructed. The shape functions are used as the interpolation functions of variable curvature and variable height to accommodate to the variation of curvature and section height. A MATLAB numerical analysis program has been implemented.


2011 ◽  
Vol 378-379 ◽  
pp. 332-336
Author(s):  
Yong He Li ◽  
Ai Rong Liu ◽  
Qi Cai Yu ◽  
Pan Tang ◽  
Fang Jie Cheng

With an example of steel pipe concrete leaning-type arch bridge, space truss system Finite Element Analysis model is constructed using the Ruiz-Penzien random seismic vibration power spectrum model. The impact of inclined arch rib angle and the number of cross brace between main and stable arch ribs on the seismic internal force response under lateral random seismic excitation is also studied in this research. Research finding shows, the in-plane bending moment of main arch rib gradually increases with increasing stable arch rib angle and cross brace, whereas the out-of-plane bending moment and axial force display a decreasing trend. In general, this indicates that increasing stable arch rib angle and number of cross brace improves the lateral aseismatic performance of leaning-type arch bridge.


1989 ◽  
Vol 4 (1) ◽  
pp. 25-42 ◽  
Author(s):  
A.R. Kukreti ◽  
N.D. Uchil

In this paper an alternative method for dynamic response analysis of large space structures is presented, for which conventional finite element analysis would require excessive computer storage and computational time. Latticed structures in which the height is very small in comparison to its overall length and width are considered. The method is based on the assumption that the structure can be embedded in its continuum, in which any fiber can translate and rotate without deforming. An appropriate kinematically admissable series function is constructed to descrbe the deformation of the middle plane of this continuum. The unknown coefficients in this function are called the degree-of-freedom of the continuum, which is given the name “super element.” Transformation matrices are developed to express the equations of motion of the actual systems in terms of the degrees-of-freedom of the super element. Thus, by changing the number of terms in the assumed function, the degrees-of-freedom of the super element can be increased or decreased. The super element response results are transformed back to obtain the desired response results of the actual system. The method is demonstrated for a structure woven in the shape of an Archimedian spiral.


Author(s):  
Akihito Otani ◽  
Izumi Nakamura ◽  
Hajime Takada

When piping systems are subjected to extreme seismic excitation, they undergo a plastic deformation that produces a large damping effect via energy dissipation. Based on our studies of the damping effect of the elasto-plastic response of piping, we have presented a simplified method for predicting the elasto-plastic response of piping in PVP conferences over the last several years. Yet the elasto-plastic response of piping calculated by this method resulted in conservative predictions compared with the results of piping model excitation tests. In the proposed method, we calculate the vibration energy of piping and the dissipation energy with plastic deformation by FEM analysis and obtain the equivalent damping ratio as a ratio between the two. The equivalent damping ratio and response are interdependent and can be calculated as a pair of converged values. In this paper we report simulation results from 3D piping model excitation tests as well as the results from 2D piping model tests. The simulation method is a modified and improved version of the method reported earlier. The results obtained by the revised method more closely matched the results of the excitation tests.


Author(s):  
Michiya Sakai ◽  
Ryuya Shimazu ◽  
Shinichi Matsuura ◽  
Ichiro Tamura

In the seismic response analysis of piping systems, finite element analysis is performed with analysis method guidelines [1]–[4] established based on benchmark analysis. However, since it takes a great deal of effort to carry out finite element analysis, a simplified method to analyze the seismic response of complex piping systems is required. In this research, we propose a method to reduce an equivalent spring-mass system model with low degrees of freedom, which can take into account the main mode of the complicated piping system. Simplified seismic evaluation is carried out using this spring mass system model with low degrees of freedom, and the accuracy of response evaluation is confirmed by comparison with finite element analysis.


Author(s):  
Atsushi Okami ◽  
Shunji Kataoka ◽  
Takuro Honda

Waterhammer is the phenomenon which occurs due to rapid valve operation or sudden stop of pumps. When the waterhammer occurs, unbalanced pressure between elbows causes transient load on piping system. In the piping design against the waterhammer, it is necessary to evaluate the strength and the displacement of piping system against the transient load, and required to provide adequate piping supports. In the piping design, dynamic analysis and static analysis with DLF (Dynamic Load Factor) are often conducted to consider dynamic effect of the water hammer load. The piping support often regarded as rigid in the piping system analysis, however, because of support characteristic (flexibility, plastic behavior, sliding friction), the dynamic response of piping system changes from analysis result with rigid support. For this reason, support characteristics shall be considered adequately. Nevertheless, effect of the support characteristics on the piping design has not been discussed sufficiently. In this paper, to clarify the effect of the support characteristics against the waterhammer load, a series of the nonlinear dynamic analyses were conducted. Based on the analysis results, the response spectra and the ductility charts considering the nonlinearities of the piping system were created. the design approach to properly control the displacement of piping system based on the nonlinear response spectra and ductility charts, is proposed, and the dynamic response against waterhammer load in the piping system of LNG loading line is discussed.


Sign in / Sign up

Export Citation Format

Share Document