Using Transient Inflow Performance Relationships to Model the Dynamic Interaction Between Reservoir and Wellbore During Pressure Testing

Author(s):  
Aldo Costantini ◽  
Gioia Falcone ◽  
Geoffrey F. Hewitt ◽  
Claudio Alimonti

The fundamental understanding of the dynamic interactions between multiphase flow in the reservoir and that in the wellbore remains surprisingly weak. The classical way of dealing with these interactions is via inflow performance relationships (IPR’s), where the inflow from the reservoir is related to the pressure at the bottom of the well, which is a function of the multiphase flow behaviour in the well. Steady-state IPR’s are normally adopted, but their use may be erroneous when transient multiphase flow conditions occur. Transient multiphase flow in the wellbore causes problems in well test interpretation when the well is shut-in at surface and the bottomhole pressure is measured. Pressure build-up (PBU) data recorded during a test can be dominated by transient wellbore effects (e.g. phase change, flow reversal and re-entry of the denser phase into the producing zone), making it difficult to distinguish between true reservoir features and transient wellbore artefacts. This paper introduces a method to derive the transient IPR’s at bottomhole conditions in order to link the wellbore to the reservoir during PBU. A commercial numerical simulator was used to build a simplified reservoir model (single well, radial co-ordinates, homogeneous rock properties) using published data from a gas condensate field in the North Sea. In order to exclude wellbore effects from the investigation of the transient inflow from the reservoir, the simulation of the wellbore was omitted from the model. Rather than the traditional flow rate at surface conditions, bottomhole pressure was imposed to constrain the simulation. This procedure allowed the flow rate at the sand face to be different from zero during the early times of the PBU, even if the surface flow rate is equal to zero. As a result, a transient IPR at bottomhole conditions was obtained for the given field case and for a specific set of time intervals, time steps and bottomhole pressure. In order to validate the above simulation approach, a preliminary evaluation of the required experimental set-up was carried out. The set-up would allow the investigation of the dynamic interaction between the reservoir, the near-wellbore region and the well, represented by a pressured vessel, a cylindrical porous medium and a vertical pipe, respectively.

2008 ◽  
Vol 130 (4) ◽  
Author(s):  
Aldo Costantini ◽  
Gioia Falcone ◽  
Geoffrey F. Hewitt ◽  
Claudio Alimonti

The fundamental understanding of the dynamic interactions between multiphase flow in the reservoir and that in the wellbore remains surprisingly weak. The classical way of dealing with these interactions is via inflow performance relationships (IPRs), where the inflow from the reservoir is related to the pressure at the bottom of the well, which is a function of the multiphase flow behavior in the well. A steady-state IPRs are normally adopted, but their use may be erroneous when transient multiphase flow conditions occur. The transient multiphase flow in the wellbore causes problems in well test interpretation when the well is shut-in at the surface and the bottomhole pressure is measured. The pressure buildup (PBU) data recorded during a test can be dominated by transient wellbore effects (e.g., phase change, flow reversal, and re-entry of the denser phase into the producing zone), making it difficult to distinguish between true reservoir features and transient wellbore artifacts. This paper introduces a method to derive the transient IPRs at bottomhole conditions in order to link the wellbore to the reservoir during PBU. A commercial numerical simulator was used to build a simplified reservoir model (single well, radial coordinates, homogeneous rock properties) using published data from a gas condensate field in the North Sea. In order to exclude wellbore effects from the investigation of the transient inflow from the reservoir, the simulation of the wellbore was omitted from the model. Rather than the traditional flow rate at surface conditions, bottomhole pressure was imposed to constrain the simulation. This procedure allowed the flow rate at the sand face to be different from zero during the early times of the PBU, even if the surface flow rate is equal to zero. As a result, a transient IPR at bottomhole conditions was obtained for the given field case and for a specific set of time intervals, time steps, and bottomhole pressure. In order to validate the above simulation approach, a preliminary evaluation of the required experimental setup was carried out. The setup would allow the investigation of the dynamic interaction between the reservoir, the near-wellbore region, and the well, represented by a pressured vessel, a cylindrical porous medium, and a vertical pipe, respectively.


2021 ◽  
Author(s):  
Miguel Angel Cedeno

Abstract The unconventional resources development has grown tremendously as a result of the advancement in horizontal drilling technology coupled with hydraulic fracturing. However, as more wells are drilled and fractured close to each other, frac hits have become a major challenge in these wells. The aim of this work is to investigate the effect of nitrogen injection flow rate and pressure on unloading frac hits gas wells in transient multiphase flow. A numerical simulation model was created using a transient multiphase flow simulator to mimic the unloading process of frac hits by injecting nitrogen from the surface through the annulus section of the well. Many simulation cases were created and analyzed to comprehend the effect of the nitrogen injection rate and pressure on the unloading of frac hits. The model mimicked real field data from currently active well in the Eagle Ford Shale. The results showed that as the nitrogen injection pressure increases, the nitrogen volume and the time to unload the frac hits decrease. On the other hand, increasing the injection rate of nitrogen will increase the nitrogen volume required to unload the frac hits. In addition, the time to unload frac hits will be decreased as the nitrogen injection rate increases. These results indicate that the time required to unload frac hits will be minimized if higher flow rates of nitrogen were utilized. Nonetheless, the volume of nitrogen required to unload the frac hits will be maximized. An important observation to highlight is that the operators can save money by reducing the time for injecting nitrogen. This observation was verified when increasing the injection pressure in the frac hit well in the Eagle Ford Shale, the time of injection was reduced 20%. This study presents the effects of nitrogen injection flow rate and injection pressure for unloading frac hits in gas wells. Due to the lack of published studies about this topic, this work can serve as a practical guideline for unloading frac hits in gas wells.


2016 ◽  
Vol 5 (2) ◽  
pp. 57-61
Author(s):  
Novrianti Novrianti

The number of production wells refers to the performance of the well, which is shown in the graph of inflow performance relationship (IPR). Reservoir characteristics influence on performance of the well, type of welltest and methods that be used in the determination of IPR. By using the IPR curves, maximum flow rate and the optimal flow rate of the well will be known. Pressure Build Up test is used to know performance and a maximum flow rate of the X well. Well test conducted for 15 hours. The well produced at a constant flow rate than close the wellhead. The Pressure data and time data obtained from the well test. The result of Pressure build-up testing analysis among permeability, skin and flow efficiency. After analyzing the Pressure build-up testing permeability obtained 190 mD, skin + 1,68 and 0,83 flow efficiency. Based on the value of flow efficiency Standing method is the most appropriate method is used to analyze the productivity of X well. Standing appropriate method for wells with skin ≠ 0 and flow efficiency ≠ 1. The maximum flow rate of the X well using Standing Method on the 0,83 flow efficiency was 13,91 MMSCFD


2018 ◽  
Vol 11 (1) ◽  
pp. 55-69 ◽  
Author(s):  
Giancarlo Chiatti ◽  
Ornella Chiavola ◽  
Fulvio Palmieri ◽  
Roberto Pompei

Background:The paper deals with a diesel common rail nozzle in which a novel orifice layout is implemented.Objective:Its influence on the nozzle mechanical-hydraulic behavior and on the spray shape transient development is experimentally investigated.Methods:In the research, a solenoid injector for light duty diesel engines is equipped with the novel nozzle prototype and tested. The prototype layout is described, pointing out the features of the nozzle orifices, in which a Slot cross-section is adopted; the investigation is accomplished extending the hydraulic tests and the spray visualizations to a reference nozzle with standard holes. The influence of the hole layout on the mechanical-hydraulic behavior of the nozzle is assessed by experimental analysis based on the rate of injection measurement, in comparison with the reference nozzle. Once the hydraulic behavior of the novel nozzle has been characterized in terms of mass flow rate, the slot influence on the spray shape is assessed analyzing the macroscopic features such as the penetration distance and the spray angle, in non evaporative conditions. The study is carried out under transient injection conditions, for different injection pressures, up to 1400 bar.Results:The results on spray characteristics also provide reference information to set up spray models suited to take the Slot orifice into account.


Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 1048
Author(s):  
Xipeng Guo ◽  
Joel Godinez ◽  
Nicholas J. Walla ◽  
Armin K. Silaen ◽  
Helmut Oltmann ◽  
...  

In a steel-refining ladle, the properties of manufactured steel can be notably degraded due to the presence of excessive inclusions. Stirring via gas injection through a porous plug is often used as part of the steel-refining process to reduce these inclusions. In this paper, 3D computational fluid dynamics (CFD) modeling is used to analyze transient multiphase flow and inclusion removal in a gas-stirred ladle. The effects of gas stirring with bubble-inclusion interaction are analyzed using the Euler–Euler approach for multiphase flow modeling, while the effects of inclusions aggregation and removal are modeled via a population balance model (PBM).


2021 ◽  
Author(s):  
Larisa A. Chipiga ◽  
Anna E. Petrova ◽  
Artem A. Mosunov ◽  
Laura T. Naurzbaeva ◽  
Stanislaus M. Kushnarenko ◽  
...  

In connection with the constantly increasing use of monoclonal antibodies labeled with 89Zr, in clinical practice, it is urgent to study their pharmacokinetics with the determination, based on the data obtained, of absorbed doses in tumor foci, as well as intact organs and tissues, and effective doses of patients. To date, there are a limited number of studies that provide patient doses for diagnostic examinations using 89Zr-labeled monoclonal antibodies. In this regard, the purpose of this work was to assess the biodistribution of various monoclonal antibodies (ramucirumab, trastuzumab, atezolizumab) labeled with 89Zr, based on published data, with subsequent calculation of absorbed doses in radiosensitive organs and tissues and effective doses of patients. Based on the analysis of experimental data on the biodistribution of monoclonal antibodies labeled with 89Zr for the diagnosis of oncological diseases from the available literature sources and our own assessments, it has been concluded that the results of the determination of absorbed in organs and tissues and effective doses are inconsistent. The absorbed doses in organs, according to different literature sources, vary up to an order of magnitude within one organ and reach 440 mGy per examination, the effective dose varies from 3 to 112 mSv per examination. This may be due to differences in study design, radiometry and dose assessment methods. Comparison with doses obtained on the basis of a general model of biodistribution of monoclonal antibodies demonstrates the possibility of using this model for a rough estimate of internal doses of patients. However, for a more accurate assessment, it is necessary to standardize approaches to the determination of internal radiation doses using the most effective methodological solutions and software products.


2018 ◽  
Author(s):  
Kanat Karatayev ◽  
Beibit Bissakayev ◽  
Tamer Saada ◽  
Benjamin Madeley ◽  
Alberto Brancolini ◽  
...  

2018 ◽  
Author(s):  
Kanat Karatayev ◽  
Beibit Bissakayev ◽  
Tamer Saada ◽  
Benjamin Madeley ◽  
Alberto Brancolini ◽  
...  

Author(s):  
W. G. Ayad

SynopsisThe International Board for Plant Genetic Resources (IBPGR) has paid particular emphasis to SW Asia in its endeavour to collect, conserve and promote utilisation of the world's plant germplasm. This is in view of the region's rich genetic diversity in many crop plants and their weedy/wild relatives, coupled with its alarming rate of genetic erosion. Action during the past decade has focused on collecting mainly cereal and grain legume crops and their closest wild relatives within the framework of a regional programme encompassing six countries. Gene banks were also set up in these member countries to handle a full range of operations including seed storage, characterisation/preliminary evaluation and documentation. In future, emphasis will be placed on ecogeographical surveys prior to mounting collecting missions and on more characterisation/preliminary evaluation work.


Sign in / Sign up

Export Citation Format

Share Document