steel refining
Recently Published Documents


TOTAL DOCUMENTS

104
(FIVE YEARS 15)

H-INDEX

12
(FIVE YEARS 1)

2021 ◽  
Vol 61 (7) ◽  
pp. 2041-2047
Author(s):  
Yu Li ◽  
Weitao Tang ◽  
Hongjian Sheng ◽  
Yindong Yang ◽  
Alex Mclean

Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 1048
Author(s):  
Xipeng Guo ◽  
Joel Godinez ◽  
Nicholas J. Walla ◽  
Armin K. Silaen ◽  
Helmut Oltmann ◽  
...  

In a steel-refining ladle, the properties of manufactured steel can be notably degraded due to the presence of excessive inclusions. Stirring via gas injection through a porous plug is often used as part of the steel-refining process to reduce these inclusions. In this paper, 3D computational fluid dynamics (CFD) modeling is used to analyze transient multiphase flow and inclusion removal in a gas-stirred ladle. The effects of gas stirring with bubble-inclusion interaction are analyzed using the Euler–Euler approach for multiphase flow modeling, while the effects of inclusions aggregation and removal are modeled via a population balance model (PBM).


2021 ◽  
Vol 8 ◽  
Author(s):  
Ming Li ◽  
Huajie Wu ◽  
Yanhui Sun

Polar steel requires excellent toughness and corrosion resistance for breaking icy surfaces in low-temperature seawater environments. In this study, the effect of inclusions on the corrosion resistance of polar steel was examined. In the experiments conducted, the composition and morphology of the inclusions in steel were controlled using different deoxidation methods during steel refining. The morphology and composition of the corrosion-resistant active inclusions were analyzed using scanning electron microscopy and energy dispersive spectroscopy. The corrosion resistance of polar steel was determined by measuring the saturation current density of the anodic dissolution of steel in a corrosive medium via an electrochemical method. The corrosion resistance under simulated seawater was also investigated under laboratory conditions. It was found that as the ratio of Al/Mg approaches the stoichiometric composition of the spinel (2.3–2.5), the inclusions become less active; as the ratio increases further, the corrosion-resistant activity increases due to the formation of MgAl2O4⋅CaO complexes, leading to an increase in local stress around the inclusions. If steel is deoxidized with Zr–Ti, small Zr–Ti complex oxides form in the steel, providing nucleation particles for the precipitation of spheroidized and uniformly distributed MnS. Therefore, steel deoxidized with Zr–Ti has better seawater corrosion resistance than Al-deoxidized steel.


2021 ◽  
Vol 26 (2) ◽  
pp. 204-211
Author(s):  
Rudi Yuniarto Adi ◽  
Safira Yulia Rizqi ◽  
Sie Alexander Patrick Subagyo ◽  
Ay Lie Han

The use of industrial waste as a component of nowadays building material has become of major importance due to the underlining of environmental and sustainability issues. Among these materials is Ground Granulated Blast Furnace Slag (GGBFS), often referred to as slag-cement. The material is a residue produced during the steel refining process. The cementitious nature of the product makes it most suitable for ordinary Portland cement (PC) substitution. However, the behavior of this slag-cement in terms of development time and strength has not been defined in great details. In the construction industry, time is of major importance, a prolonged hydration process could delay the overall process. This research work focused on the setting time and strength response of slag-cement in mortar. The ratio of mortar constituent of cement-to-sand was 1 : 3. The percentage of slag-cement substitute to PC was 0%, 25%, 50% and 75% to the cement weight. The compressive strength was tested at the age of 14 days and 28 days. The results of the analysis showed that at a 25% slag-cement substitution a very significant increase in strength was shown. The increase was more pronounced at the age of 28 days when compared to 14 days and recorded to be 31.90%. As for the 50% and 75% slag-cement substitution, no significant increase in strength improvement was noticed. The test results showed a 2.66% enhancement for the 50% slag- cement substitution and a 2.45% increase for a 75% slag-cement replacement. The study also showed that slag-cement required a higher water-cement factor for the normal consistency


2020 ◽  
Author(s):  
Alexander Ponomarenko

The composition and properties of fluorine–anhydrite and steel–refining slag which are wastes of production of hydrogen fluoride and steel were determined. It is established that fluorine–anhydrite of the current output does not meet the requirements to materials for the production of Portland cement. Therefore to improve the technical and consumer properties of fluorine-anhydrite (for increasing the amount of CaSO4 ⋅2H2O and neutralization of H2SO4) the studies of its’ conditioning processes with steel– refining slag were carried out. It was found that the mass transfer coefficient of sulfuric acid through the capillary and the degree of its neutralization by slag depend on the dispersion of fluorine–anhydrite, its porosity and initial acidity. The most effective binding of sulfuric acid occurs with the introduction of slag in stoichiometric amounts, the size of fluorine–anhydrite granules up to 20 mm and a processing time of 60 minutes. After storage in air-humid conditions for 12 hours of fluorine–anhydrite treated with slag the strength of its granules, the amount of dihydrate gypsum and toxicological properties meet the requirements. Keywords: techno–gypsum, refining slag, neutralization, conditioning, gypsum stone, Portland cement


2020 ◽  
Vol 50 (6) ◽  
pp. 397-401
Author(s):  
V. G. Efimova
Keyword(s):  

2020 ◽  
Vol 63 (3-4) ◽  
pp. 238-247
Author(s):  
G. G. Mikhailov ◽  
L. A. Makrovets ◽  
O. V. Samoilova

2020 ◽  
Vol 50 (4) ◽  
pp. 234-242
Author(s):  
G. G. Mikhailov ◽  
L. A. Makrovets ◽  
O. V. Samoilova

Sign in / Sign up

Export Citation Format

Share Document