Bivariate Distributions of Significant Wave Height With Characteristic Wave Steepness and Characteristic Surf Parameter

Author(s):  
Dag Myrhaug ◽  
Se´bastien Fouques

The paper provides a bivariate distribution of significant wave height and characteristic wave steepness, as well as a bivariate distribution of significant wave height and characteristic surf parameter. The characteristic wave steepness in deep water is defined in terms of the significant wave height and the spectral peak period, and is relevant for e.g. the design of ships and marine structures. The characteristic surf parameter is given by the ratio between the slope of a beach or a structure and the square root of the characteristic wave steepness in deep water. The characteristic surf parameter is used to characterize surf zone processes and is relevant for e.g. wave run-up on beaches and coastal structures. The paper presents statistical properties of the wave parameters as well as examples of results typical for field conditions.

Author(s):  
Dag Myrhaug ◽  
Bernt J. Leira ◽  
Håvard Holm

This paper provides a bivariate distribution of wave power and significant wave height, as well as a bivariate distribution of wave power and a characteristic wave period for sea states, and the statistical aspects of wave power for sea states are discussed. This is relevant for, e.g., making assessments of wave power devices and their potential for converting energy from waves. The results can be applied to compare systematically the wave power potential at different locations based on long term statistical description of the wave climate.


Author(s):  
Michele Drago ◽  
Giancarlo Giovanetti ◽  
Claudia Pizzigalli

The physical limit of the significant wave steepness is generally exceeded when assessing the seastate climate and the extreme iso-probability contours, i.e. too short significant wave peak periods Tp are sometimes associated to a certain significant wave height Hs. The occurrence of not physically consistent Tp is clearly due to a fault in the generally made assumption of a log-normal distribution of the Tp, where the physical limit for the period would be Tp > 0, i.e. the existence limit of the log-normal distribution, which is well below the real physical limit for significant wave steepness. If this is not a problem for pipeline design, where stability and fatigue are dominated by longer peak periods associated at each significant wave height, loads overestimation could arise for near surface structures, e.g. riser, where the largest loads and fatigue, are caused by the shorter peak periods associated to a certain significant wave height. Hence, the possibility to define a Tp distribution which respects the physical lower bound of the limiting wave steepness has a significant relevance when dealing with design and installation of near surface structures. The present paper proposes a new methodology for the assessment of the Hs-Tp distribution which respects an a-priori defined wave steepness limit. This can be done basing on the definition of significant wave steepness Sp = 2πHs/gTp2 which, assessing a limiting steepness Sp, provide an physical lower bound Tplim for the peak period Defining a new variable Tp′ = Tp – Tplim and imposing that Tp′ follows a log-normal distribution, hence having a physical limit Tp′ > 0, is equivalent to assess a Tp distribution which respects the defined significant wave steepness limit Tp > Tplim. A test case compares results obtained with the ‘old’ and ‘new’ methodologies and shows the implication on the design loads. Moreover, another test case has been investigated to verify the performance and characteristics of the new methodology.


2017 ◽  
Vol 47 (10) ◽  
pp. 2603-2609 ◽  
Author(s):  
S. A. Hsu ◽  
Yijun He ◽  
Hui Shen

AbstractStudies suggested that neutral-stability wind speed at 10 m U10 ≥ 9 m s −1 and wave steepness Hs/Lp ≥ 0.020 can be taken as criteria for aerodynamically rough ocean surface and the onset of a wind sea, respectively; here, Hs is the significant wave height, and Lp is the peak wavelength. Based on these criteria, it is found that, for the growing wind seas when the wave steepness increases with time during Hurricane Matthew in 2016 before the arrival of its center, the dimensionless significant wave height and peak period is approximately linearly related, resulting in U10 = 35Hs/Tp; here, Tp is the dominant or peak wave period. This proposed wind–wave relation for aerodynamically rough flow over the wind seas is further verified under Hurricane Ivan and North Sea storm conditions. However, after the passage of Matthew’s center, when the wave steepness was nearly steady, a power-law relation between the dimensionless wave height and its period prevailed with its exponent equal to 1.86 and a very high correlation coefficient of 0.97.


Author(s):  
Zhenjia (Jerry) Huang ◽  
Qiuchen Guo

In wave basin model test of an offshore structure, waves that represent the given sea states have to be generated, qualified and accepted for the model test. For seakeeping and stationkeeping model tests, we normally accept waves in wave calibration tests if the significant wave height, spectral peak period and spectrum match the specified target values. However, for model tests where the responses depend highly on the local wave motions (wave elevation and kinematics) such as wave impact, green water impact on deck and air gap tests, additional qualification checks may be required. For instance, we may need to check wave crest probability distributions to avoid unrealistic wave crest in the test. To date, acceptance criteria of wave crest distribution calibration tests of large and steep waves of three-hour duration (full scale) have not been established. The purpose of the work presented in the paper is to provide a semi-empirical nonlinear wave crest distribution of three-hour duration for practical use, i.e. as an acceptance criterion for wave calibration tests. The semi-empirical formulas proposed in this paper were developed through regression analysis of a large number of fully nonlinear wave crest distributions. Wave time series from potential flow simulations, computational fluid dynamics (CFD) simulations and model test results were used to establish the probability distribution. The wave simulations were performed for three-hour duration assuming that they were long-crested. The sea states are assumed to be represented by JONSWAP spectrum, where a wide range of significant wave height, peak period, spectral peak parameter, and water depth were considered. Coefficients of the proposed semi-empirical formulas, comparisons among crest distributions from wave calibration tests, numerical simulations and the semi-empirical formulas are presented in this paper.


Author(s):  
Leonardo Roncetti ◽  
Fabrício Nogueira Corrêa ◽  
Carl Horst Albrecht ◽  
Breno Pinheiro Jacob

Lifting operations with offshore cranes are fundamental for proper functioning of a platform. Despite the great technological development, offshore cranes load charts only consider the significant wave height as parameter of environmental load, neglecting wave period, which may lead to unsafe or overestimated lifting operations. This paper aims to develop a method to design offshore crane operational limit diagrams for lifting of personnel and usual loads, in function of significant wave height and wave peak period, using time domain dynamic analysis, for a crane installed on a floating unit. The lifting of personnel with crane to transfer between a floating unit and a support vessel is a very used option in offshore operations, and this is in many cases, the only alternative beyond the helicopter. Due to recent fatal accidents with lifting operations in offshore platforms, it is essential the study about this subject, contributing to the increase of safety. The sea states for analysis were chosen covering usual significant wave heights and peak periods limits for lifting operations. The methodology used the SITUA / Prosim software to obtain the dynamic responses of the personnel transfer basket lifting and container loads on a typical FPSO. Through program developed by the author, it was implemented the automatic generation of diagrams as a function of operational limits. It is concluded that using this methodology, it is possible to achieve greater efficiency in the design and execution of personnel and routine load lifting, increasing safety and a wider weather window available.


Author(s):  
Catarina S. Soares ◽  
C. Guedes Soares

This paper presents the results of a comparison of the fit of three bivariate models to a set of 14 years of significant wave height and peak wave period data from the North Sea. One of the methods defines the joint distribution from a marginal distribution of significant wave height and a set of distributions of peak period conditional on significant wave height. Other method applies the Plackett model to the data and the third one applies the Box-Cox transformation to the data in order to make it approximately normal and then fits a bivariate normal distribution to the transformed data set. It is shown that all methods provide a good fit but each one have its own strengths and weaknesses, being the choice dependent on the data available and applications in mind.


2018 ◽  
Vol 5 (1) ◽  
pp. 119
Author(s):  
Karina Santoso ◽  
I Dewa Nyoman Nurweda Putra ◽  
I Gusti Bagus Sila Dharma

Bali is one of the islands where there are many surf zones with various characteristics. In addition, Bali is also a heaven with a classy wave for the surfers of the world. One of the most challenging places to surf in Bali is Uluwatu Beach. Uluwatu Beach is ranked the 3rd best surf spot in the world version of CNN Travel in 2012. Wind causes sea waves, therefore wind data can be used to estimate the height and direction of the waves. Wave Hindcasting with Sverdrup, Munk and Bretschneider (SMB) method is calculated based on wind data for 10 years (2001 - 2010) from BMKG Ngurah Rai Station - Denpasar to obtain a significant wave height and period. In this research, it is necessary to approach through Hindcasting procedure, wave transformation analysis and surfing Terminology in determining the type of breaking wave and classification of surf zone in Uluwatu Beach area. Wave calculation result in Uluwatu Beach dominated by wave that coming from west side with significant wave height (Hs) of 0.98 m and significant wave period (Ts) of 5.21 s. The wave height due to the influence of wave refraction and shoaling is 0.976 m. The breaking wave height obtained from the calculation is 1.04 m at a depth of 0.849 m. From the result in this research, it can be concluded that the breaking wave type that occurred at Uluwatu Beach is plunging type according to the calculation result from its Irribaren number (0.4 <Ni <2.3). The classification of the surf zone at Uluwatu Beach based on its breakup type of wave is thought to be a good zone for surfers on intermediate level.


1992 ◽  
Vol 114 (4) ◽  
pp. 278-284 ◽  
Author(s):  
C. Guedes Soares ◽  
M. C. Nolasco

The spectral models of individual wave systems have one peak and are described by theoretical models that have gained general acceptance. This work deals with sea states with more than one wave system, leading to spectral models with two or more peaks. Use is made of spectra derived from measurements off the Portuguese Coast and data is provided as to their probability of occurrence as well as about the dependence of the spectral parameters on the significant wave height and peak period. It is shown that wind-dominated and swell-dominated two-peaked spectra tend to occur in different areas of the scatter diagram. The spectral parameters of the two-peaked spectra show little correlation with significant wave height and peak period.


RBRH ◽  
2017 ◽  
Vol 22 (0) ◽  
Author(s):  
Natália Lemke ◽  
◽  
Lauro Julio Calliari ◽  
José Antônio Scotti Fontoura ◽  
Déborah Fonseca Aguiar

ABSTRACT The wave climate characterization in coastal environments is essentially important to oceanography and coastal engineering professionals regarding coastal protection works. Thus, this study aims to determine the most frequent wave parameters (significant wave height, peak period and peak direction) in Patos Lagoon during the period of operation of a directional waverider buoy (from 01/27/2015 to 06/30/2015). The equipment was moored at approximately 14 km from the São Lourenço do Sul coast at the geographic coordinates of 31º29’06” S and 51º55’07” W, with local depth of six meters, registering significant wave height, peak period and peak direction time series. During the analyzed period, the greatest wave frequencies corresponded to short periods (between 2 and 3.5 seconds) and small values of significant wave heights (up to 0.6 meters), with east peak wave directions. The largest wave occurrences corresponded to east peak wave directions (33.3%); peak wave periods between 2.5 and 3 seconds (25.6%) and between 3 and 3.5 seconds (22.1%); and to significant wave heights of up to 0.3 meters (41.2%) and from 0.3 to 0.6 meters (38%). This research yielded unprecedented findings to Patos Lagoon by describing in detail the most occurring wave parameters during the analyzed period, establishing a consistent basis for several other studies that might still be conducted by the scientific community.


Sign in / Sign up

Export Citation Format

Share Document