hurricane ivan
Recently Published Documents


TOTAL DOCUMENTS

102
(FIVE YEARS 9)

H-INDEX

22
(FIVE YEARS 1)

PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0243362
Author(s):  
Ajay Sharma ◽  
Santosh K. Ojha ◽  
Luben D. Dimov ◽  
Jason G. Vogel ◽  
Jarek Nowak

Threats posed by windstorms are an increasing concern to forest managers in the southern United States (US). Studies suggest that the southern US will experience an increase in the occurrence as well as the intensity of windstorms, such as hurricanes, in the future. However, forest managers may have difficulty preparing for this future because there is limited understanding of how windstorms affect the structure and composition of forests over the long term. In this study, we evaluated the impacts of Hurricane Ivan, which made landfall in September 2004 near Gulf Shore, Alabama, impacting forests in the western Florida Panhandle and southwestern Alabama. We acquired the United States Department of Agriculture Forest Inventory and Analysis (FIA) plot data available for the period from 2002 to 2018 for the Ivan-affected area and classified the plots into 4 categories: (1). ND (No Disturbance), (2). NDBH (No Disturbance but Harvested), (3). ID (Disturbance caused by Hurricane Ivan), and (4). IDAH (Disturbance caused by Hurricane Ivan and Harvested). The plots that were damaged by Hurricane Ivan (ID and IDAH plots) had significantly (α = 0.05) (1) higher basal area, (2) higher quadratic mean diameter and height, (3) more diverse tree species composition (species richness and Shannon diversity index), (4) denser stocking of seedling and saplings, (5) lower proportion of dead trees or saplings, and (6) higher live aboveground biomass than the plots that were not damaged by the hurricane (ND and NDBH plots). Diverse stands were not necessarily more windstorm resistant. Species diversity in the overstory may not improve forest resistance to hurricane damage but may improve its resilience following the hurricane. The study suggests that managing stand structure through density management and stand improvement could be critical to windstorm resilience and resistance in the southern US forests.


Oceanologia ◽  
2020 ◽  
Author(s):  
Mehdi Yaghoobi Kalourazi ◽  
Seyed Mostafa Siadatmousavi ◽  
Abbas Yeganeh-Bakhtiary ◽  
Felix Jose

Author(s):  
Dereka Carroll-Smith ◽  
Robert J. Trapp ◽  
James M. Done

AbstractThe overarching purpose of this study is to investigate the impacts of anthropogenic climate change both on the rainfall and tornadoes associated with tropical cyclones (TCs) making landfall in the U.S. Atlantic Basin. The “pseudo-global” warming (PGW) approach is applied to Hurricane Ivan (2004), a historically prolific tropical cyclone tornado (TCT)-producing storm. Hurricane Ivan is simulated under its current climate forcings using the Weather Research and Forecasting model. This control simulation (CTRL) is then compared to PGW simulations in which the current forcings are modified by climate-change differences obtained from the Community Climate System Model version 4 (NCAR), Model for Interdisciplinary Research on Climate version 5 (MIROC), and Geophysical Fluid Dynamics Laboratory Climate Model version 3 (GFDL) climate models. Changes in TC intensity, TC rainfall, and TCT production, identified for the PGW-modified Ivan are documented and analyzed.Compared to CTRL, all three PGW simulations show an increase in TC intensity and generate substantially more accumulated rainfall over the course of Ivan’s progression overland. However, only one of the TCs under PGW (MIROC) produced more TCTs than the control. Evidence is provided that in addition to favorable environmental conditions, TCT production is related to the TC track length and to the strength of the interaction between the TC and an environmental mid-level trough. Enhanced TCT generation at landfall for MIROC and GFDL is attributed to increased values of convective available potential energy, low level shear and storm relative environmental helicity.


2019 ◽  
Vol 7 (11) ◽  
pp. 378 ◽  
Author(s):  
Smith ◽  
Jolliff ◽  
Walker ◽  
Anderson

Tropical cyclone induced phytoplankton productivity is examined using a tropical cyclone version of the Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS®). A four-component Nutrient–Phytoplankton–Detritus biological model is integrated into COAMPS to create a fully integrated air-ocean-wave-biology model. This study investigates the upper ocean physical and biological states before and after Hurricane Ivan traversed the central Gulf of Mexico, in mid-September 2004. Elevated concentrations of surface chlorophyll-a appear in the simulation two days after the passage of the tropical cyclone, and these results are spatially and temporally coherent with Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data for this time period. Model results reveal enhancement of chlorophyll-a in submesoscale filaments on the periphery of a warm-core eddy that are dominated by large values of lateral strain and relative vorticity at the surface. The vertical circulation of the filament, with its associated upward vertical motion, permits surface ventilation of cold, nitrogen-rich water and subsequent stimulation of primary biological production. Here, we show for the first time that coupled biological-physical submesoscale processes may be simulated via a fully integrated air-sea-wave-biology tropical cyclone model that provides a mechanistic explanation of the conspicuous features revealed in satellite ocean color imagery following Ivan.


2019 ◽  
Vol 13 (1) ◽  
pp. 29-45 ◽  
Author(s):  
Iván A. Ortiz-Rodríguez ◽  
Jose Raventós ◽  
Ernesto Mújica ◽  
Elaine González-Hernández ◽  
Ernesto Vega-Peña ◽  
...  

2019 ◽  
Vol 19 (193) ◽  
pp. 1
Author(s):  

Grenada has made significant strides to counter climate change but meeting the daunting remaining challenges will require domestic policy actions and sustained international support. Climate change is an existential threat to Grenada. Increasing frequency and intensity of coastal storms threatens infrastructure and livelihoods, as do increased risk of coastal flooding and drought. Notably, Hurricane Ivan in 2004 caused damages of over 200 percent of GDP. Grenada has recognized this by placing climate resilience at the center of its policy making and forging strategic alliances with key global climate finance providers. However, the challenges facing the country remain daunting and will require large increases in international support, both financial and technical, to assist the Grenadian authorities turn their impressive resilience plans into action.


2019 ◽  
Vol 58 (3) ◽  
pp. 569-583
Author(s):  
John Molinari ◽  
Michaela Rosenmayer ◽  
David Vollaro ◽  
Sarah D. Ditchek

AbstractThe NOAA G-IV aircraft routinely measures vertical aircraft acceleration from the inertial navigation system at 1 Hz. The data provide a measure of turbulence on a 250-m horizontal scale over a layer from 12.8- to 14.8-km elevation. Turbulence in this layer of tropical cyclones was largest by 35%–40% in the inner 200 km of radius and decreased monotonically outward to the 1000-km radius. Turbulence in major hurricanes exceeded that in weaker tropical cyclones. Turbulence data points were divided among three regions of the tropical cyclone: cirrus canopy; outside the cirrus canopy; and a transition zone between them. Without exception, turbulence was greater within the canopy and weaker outside the canopy. Nighttime turbulence exceeded daytime turbulence for all radii, especially within the cirrus canopy, implicating radiative forcing as a factor in turbulence generation. A case study of widespread turbulence in Hurricane Ivan (2004) showed that interactions between the hurricane outflow channel and westerlies to the north created a region of absolute vorticity of −6 × 10−5 s−1 in the upper troposphere. Outflow accelerated from the storm center into this inertially unstable region, and visible evidence for turbulence and transverse bands of cirrus appeared radially inward of the inertially unstable region. It is argued that both cloud-radiative forcing and the development of inertial instability within a narrow outflow layer were responsible for the turbulence. In contrast, a second case study (Isabel 2003) displayed strong near-core turbulence in the presence of large positive absolute vorticity and no local inertial instability. Peak turbulence occurred 100 km downwind of the eyewall convection.


2017 ◽  
Vol 47 (10) ◽  
pp. 2603-2609 ◽  
Author(s):  
S. A. Hsu ◽  
Yijun He ◽  
Hui Shen

AbstractStudies suggested that neutral-stability wind speed at 10 m U10 ≥ 9 m s −1 and wave steepness Hs/Lp ≥ 0.020 can be taken as criteria for aerodynamically rough ocean surface and the onset of a wind sea, respectively; here, Hs is the significant wave height, and Lp is the peak wavelength. Based on these criteria, it is found that, for the growing wind seas when the wave steepness increases with time during Hurricane Matthew in 2016 before the arrival of its center, the dimensionless significant wave height and peak period is approximately linearly related, resulting in U10 = 35Hs/Tp; here, Tp is the dominant or peak wave period. This proposed wind–wave relation for aerodynamically rough flow over the wind seas is further verified under Hurricane Ivan and North Sea storm conditions. However, after the passage of Matthew’s center, when the wave steepness was nearly steady, a power-law relation between the dimensionless wave height and its period prevailed with its exponent equal to 1.86 and a very high correlation coefficient of 0.97.


Sign in / Sign up

Export Citation Format

Share Document