Sensitivity of Slug Flow Mechanistic Models on Slug Length

Author(s):  
Cem Sarica ◽  
Hong-Quan Zhang ◽  
Robert J. Wilkens

Slug flow is one of the common flow patterns in gas and oil production and transportation. One of the closure relationships required by the multiphase flow mechanistic models is slug length correlation. There are several closure relationships proposed in the literature as function of pipe geometry, pipe diameter and inclination angle, and to a lesser extent to the flow rates and fluid properties. In this paper, we show that most of the frequently used mechanistic models are insensitive to slug length information. The only exception to this is identified as the Zhang et al. Unified model [1]. The unified model shows sensitivity at high gas flow rates, while displaying a negligible sensitivity at low gas flow rates. In conclusion, the slug length closure relationship is not crucial for pressure loss and holdup calculations. It can be speculated that the success of the unit cell slug flow modeling approach could be attributed to insensitivity of the models to slug length considering the highly probabilistic nature of the slug length.

2011 ◽  
Vol 133 (4) ◽  
Author(s):  
Cem Sarica ◽  
Hong-Quan Zhang ◽  
Robert J. Wilkens

Slug flow is one of the common flow patterns in gas and oil production and transportation. One of the closure relationships required by the multiphase flow mechanistic models is slug length correlation. There are several closure relationships proposed in the literature as function of pipe geometry, pipe diameter, and inclination angle, and to a lesser extent to the flow rates and fluid properties. In this paper, we show that most of the frequently used mechanistic models are insensitive to slug length information. The only exception to this is identified as the Zhang et al. (2003, “Unified Model for Gas-Liquid Pipe Flow via Slug Dynamics—Part 1: Model Development,” ASME J. Energy Resour. Technol., 125, pp. 266–272). The unified model shows sensitivity at high gas flow rates, while displaying a negligible sensitivity at low gas flow rates. In conclusion, the slug length closure relationship is not crucial for pressure loss and holdup calculations. It can be speculated that the success of the unit cell slug flow modeling approach could be attributed to insensitivity of the models to slug length considering the highly probabilistic nature of the slug length.


Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1320
Author(s):  
Julia Sophie Böke ◽  
Daniel Kraus ◽  
Thomas Henkel

Reliable operation of lab-on-a-chip systems depends on user-friendly, precise, and predictable fluid management tailored to particular sub-tasks of the microfluidic process protocol and their required sample fluids. Pressure-driven flow control, where the sample fluids are delivered to the chip from pressurized feed vessels, simplifies the fluid management even for multiple fluids. The achieved flow rates depend on the pressure settings, fluid properties, and pressure-throughput characteristics of the complete microfluidic system composed of the chip and the interconnecting tubing. The prediction of the required pressure settings for achieving given flow rates simplifies the control tasks and enables opportunities for automation. In our work, we utilize a fast-running, Kirchhoff-based microfluidic network simulation that solves the complete microfluidic system for in-line prediction of the required pressure settings within less than 200 ms. The appropriateness of and benefits from this approach are demonstrated as exemplary for creating multi-component laminar co-flow and the creation of droplets with variable composition. Image-based methods were combined with chemometric approaches for the readout and correlation of the created multi-component flow patterns with the predictions obtained from the solver.


2011 ◽  
Vol 39 (6) ◽  
pp. 1103-1110 ◽  
Author(s):  
J. E. Ritchie ◽  
A. B. Williams ◽  
C. Gerard ◽  
H. Hockey

In this study, we evaluated the performance of a humidified nasal high-flow system (Optiflow™, Fisher and Paykel Healthcare) by measuring delivered FiO2 and airway pressures. Oxygraphy, capnography and measurement of airway pressures were performed through a hypopharyngeal catheter in healthy volunteers receiving Optiflow™ humidified nasal high flow therapy at rest and with exercise. The study was conducted in a non-clinical experimental setting. Ten healthy volunteers completed the study after giving informed written consent. Participants received a delivered oxygen fraction of 0.60 with gas flow rates of 10, 20, 30, 40 and 50 l/minute in random order. FiO2, FEO2, FECO2 and airway pressures were measured. Calculation of FiO2 from FEO2 and FECO2 was later performed. Calculated FiO2 approached 0.60 as gas flow rates increased above 30 l/minute during nose breathing at rest. High peak inspiratory flow rates with exercise were associated with increased air entrainment. Hypopharyngeal pressure increased with increasing delivered gas flow rate. At 50 l/minute the system delivered a mean airway pressure of up to 7.1 cmH2O. We believe that the high gas flow rates delivered by this system enable an accurate inspired oxygen fraction to be delivered. The positive mean airway pressure created by the high flow increases the efficacy of this system and may serve as a bridge to formal positive pressure systems.


Author(s):  
Z. Insepov ◽  
R. J. Miller

Propagation of Rayleigh traveling waves from a gas on a nanotube surface activates a macroscopic flow of the gas (or gases) that depends critically on the atomic mass of the gas. Our molecular dynamics simulations show that the surface waves are capable of actuating significant macroscopic flows of atomic and molecular hydrogen, helium, and a mixture of both gases both inside and outside carbon nanotubes (CNT). In addition, our simulations predict a new “nanoseparation” effect when a nanotube is filled with a mixture of two gases with different masses or placed inside a volume filled with a mixture of several gases with different masses. The mass selectivity of the nanopumping can be used to develop a highly selective filter for various gases. Gas flow rates, pumping, and separation efficiencies were calculated at various wave frequencies and phase velocities of the surface waves. The nanopumping effect was analyzed for its applicability to actuate nanofluids into fuel cells through carbon nanotubes.


2004 ◽  
Author(s):  
Mohamed S. El-Morsi ◽  
Alexander C. Wei ◽  
Gregory F. Nellis ◽  
Roxann L. Engelstad ◽  
Sybren Sijbrandij ◽  
...  

Author(s):  
Charles Becht ◽  
Frederick J. Moody

The rupture of a pipe containing gas or steam at high pressure will cause a shock wave. In order to assess the potential damage that such a shock wave may cause to the surrounding structures, systems and components, it is necessary to determine the amplitude and propagation properties of the shock. A CFD model has been developed for the purpose of predicting shock propagation transients resulting from a sudden pipe rupture in terms of the fluid properties, pipe geometry, and surroundings. A simplified shock propagation model also is included, which offers verification of the CFD model results.


1974 ◽  
Vol 14 (01) ◽  
pp. 44-54 ◽  
Author(s):  
Gary W. Rosenwald ◽  
Don W. Green

Abstract This paper presents a mathematical modeling procedure for determining the optimum locations of procedure for determining the optimum locations of wells in an underground reservoir. It is assumed that there is a specified production-demand vs time relationship for the reservoir under study. Several possible sites for new wells are also designated. possible sites for new wells are also designated. The well optimization technique will then select, from among those wellsites available, the locations of a specified number of wells and determine the proper sequencing of flow rates from Those wells so proper sequencing of flow rates from Those wells so that the difference between the production-demand curve and the flow curve actually attained is minimized. The method uses a branch-and-bound mixed-integer program (BBMIP) in conjunction with a mathematical reservoir model. The calculation with the BBMIP is dependent upon the application of superposition to the results from the mathematical reservoir model.This technique is applied to two different types of reservoirs. In the first, it is used for locating wells in a hypothetical groundwater system, which is described by a linear mathematical model. The second application of the method is to a nonlinear problem, a gas storage reservoir. A single-phase problem, a gas storage reservoir. A single-phase gas reservoir mathematical model is used for this purpose. Because of the nonlinearity of gas flow, purpose. Because of the nonlinearity of gas flow, superposition is not strictly applicable and the technique is only approximate. Introduction For many years, members of the petroleum industry and those concerned with groundwater hydrology have been developing mathematical reservoir modeling techniques. Through multiple runs of a reservoir simulator, various production schemes or development possibilities may be evaluated and their relative merits may be considered; i.e., reservoir simulators can be used to "optimize" reservoir development and production. Formal optimization techniques offer potential savings in the time and costs of making reservoir calculations compared with the generally used trial-and-error approach and, under proper conditions, can assure that the calculations will lead to a true optimum.This work is an extension of the application of models to the optimization of reservoir development. Given a reservoir, a designated production demand for the reservoir, and a number of possible sites for wells, the problem is to determine which of those sites would be the best locations for a specified number of new wells so that the production-demand curve is met as closely as possible. Normally, fewer wells are to be drilled than there are sites available. Thus, the question is, given n possible locations, at which of those locations should n wells be drilled, where n is less than n? A second problem, that of determining the optimum relative problem, that of determining the optimum relative flow rates of present and future wells is also considered. The problem is attacked through the simultaneous use of a reservoir simulator and a mixed-integer programming technique.There have been several reported studies concerned with be use of mathematical models to select new wells in gas storage or producing fields. Generally, the approach has been to use a trial-and-error method in which different well locations are assumed. A mathematical model is applied to simulate reservoir behavior under the different postulated conditions, and then the alternatives are postulated conditions, and then the alternatives are compared. Methods that evaluate every potential site have also been considered.Henderson et al. used a trial-and-error procedure with a mathematical model to locate new wells in an existing gas storage reservoir. At the same time they searched for the operational stratagem that would yield the desired withdrawal rates. In the reservoir that they studied, they found that the best results were obtained by locating new wells in the low-deliverability parts of the reservoir, attempting to maximize the distance between wells, and turning the wells on in groups, with the low-delivery wells turned on first.Coats suggested a multiple trial method for determining well locations for a producing field. SPEJ P. 44


Sign in / Sign up

Export Citation Format

Share Document