Deepwater Current Profile Data Sources for Riser Engineering Offshore Brazil

Author(s):  
Gus Jeans ◽  
Marc Prevosto ◽  
Liam Harrington-Missin ◽  
Christophe Maisondieu ◽  
Christelle Herry ◽  
...  

A variety of current profile data sources are compared for a deepwater site offshore Brazil. These data were gathered for consideration as part of the Worldwide Approximations of Current Profiles (WACUP) Joint Industry Project, described separately in OMAE2012-83348. The primary source of data for current profile characterisation is site specific full water column measurement. Sufficiently high vertical and temporal resolutions are required to capture the dominant oceanographic processes. Such in-situ data are generally expensive and time consuming to collect, so there is an increasing tendency for numerical model current data to be considered for engineering applications. In addition to being relatively inexpensive and quick to obtain, model data are also typically of much longer duration. This potentially allows inter-annual variability and rare extreme events to be captured. However, the accuracy and reliability of numerical model data remains questionable, or unproven, in many deepwater development regions. This paper explores the suitability of such models to represent a deepwater site offshore Brazil, in relation to the key oceanographic processes revealed within the in-situ data.

Author(s):  
Gus Jeans ◽  
Joe Fox ◽  
Claire Channelliere

Current profile data sources considered for derivation of engineering design criteria West of Shetland are described. The region is impacted by a variety of oceanographic processes that combine to produce a complex current regime. Reliable quantification of the resulting current profiles is required for safe and cost effective offshore exploration and field development. A key challenge to all offshore developments is acquisition of appropriate data. Site specific measurement remains the primary current profile data source for engineering applications, with full water column coverage at sufficient resolution required for riser design. Such in-situ data are generally expensive and time consuming to collect, so there is an increasing tendency for numerical model current data to be considered. Model data are often relatively quick and inexpensive to obtain, with the added benefit of a much longer duration, potentially allowing inter-annual variability and extreme events to be captured. However, the accuracy and reliability of numerical model data remains questionable, or unproven, in many deepwater development regions. This paper describes a recent study in which in-situ data remained the primary source for derivation of current profile criteria for engineering design. Short duration proprietary data were supplemented by additional public domain data from nearby sites in a regional synthesis, with critical results. The performance and benefits of readily available model data are also considered.


Author(s):  
Gus Jeans ◽  
Liam Harrington-Missin ◽  
Mark Calverley ◽  
Christophe Maisondieu ◽  
Cyril Frelin ◽  
...  

Reliable quantification of current profiles is required for safe and cost effective offshore exploration and field development. The current regime offshore West Africa is often considered benign, compared to some regions of oil and gas activity, but still presents challenges to reliable quantification. A key challenge to all offshore developments is acquisition of appropriate data. The primary source of data for riser design is site specific full water column measurement. Such in-situ data are generally expensive and time consuming to collect, so there is an increasing tendency for numerical model current data to be considered. Model data are often relatively quick and inexpensive to obtain, with the added benefit of a much longer duration, potentially allowing inter-annual variability and extreme events to be captured. However, the accuracy and reliability of numerical model data remains questionable, or unproven, in many deepwater development regions. This paper explores the suitability of such models to represent a deepwater site offshore West Africa, in relation to the key oceanographic processes revealed within the in-situ data.


2019 ◽  
Author(s):  
Tom Peterka ◽  
Deborah Bard ◽  
Janine Bennett ◽  
E. Wes Bethel ◽  
Ron Oldfield ◽  
...  

Author(s):  
Liam Harrington-Missin ◽  
Mark Calverley ◽  
Gus Jeans

The synergistic use of measured in-situ current data and altimetry derived geostrophic current data provides improved seasonal characterisation of the current regime, West of Shetland. In September 2007, considerable downtime was experienced by an offshore operator, West of Shetland, as a result of unexpectedly high currents persisting for a number of days. This downtime was unanticipated following conclusions derived from one year of in-situ measured data, which suggested a most favourable current regime during the months August to October. Ten years of altimetry derived geostrophic currents were utilised in conjunction with approximately 3 years of in-situ data to assess the validity of the reported seasonal trend. The altimetry derived geostrophic currents correlated well with the dominating long period signal extracted from the in-situ data. Seasonal comparison between the altimetry derived geostrophic currents and the total measured signal showed the previously available measurement year had a relatively benign September. Based on the 10 years of satellite data, the inter-annual variability of the current regime West of Shetland does not show any clear seasonal trend.


Ocean Science ◽  
2019 ◽  
Vol 15 (2) ◽  
pp. 249-268 ◽  
Author(s):  
Johannes Schulz-Stellenfleth ◽  
Joanna Staneva

Abstract. In many coastal areas there is an increasing number and variety of observation data available, which are often very heterogeneous in their temporal and spatial sampling characteristics. With the advent of new systems, like the radar altimeter on board the Sentinel-3A satellite, a lot of questions arise concerning the accuracy and added value of different instruments and numerical models. Quantification of errors is a key factor for applications, like data assimilation and forecast improvement. In the past, the triple collocation method to estimate systematic and stochastic errors of measurements and numerical models was successfully applied to different data sets. This method relies on the assumption that three independent data sets provide estimates of the same quantity. In coastal areas with strong gradients even small distances between measurements can lead to larger differences and this assumption can become critical. In this study the triple collocation method is extended in different ways with the specific problems of the coast in mind. In addition to nearest-neighbour approximations considered so far, the presented method allows for use of a large variety of interpolation approaches to take spatial variations in the observed area into account. Observation and numerical model errors can therefore be estimated, even if the distance between the different data sources is too large to assume that they measure the same quantity. If the number of observations is sufficient, the method can also be used to estimate error correlations between certain data source components. As a second novelty, an estimator for the uncertainty in the derived observation errors is derived as a function of the covariance matrices of the input data and the number of available samples. In the first step, the method is assessed using synthetic observations and Monte Carlo simulations. The technique is then applied to a data set of Sentinel-3A altimeter measurements, in situ wave observations, and numerical wave model data with a focus on the North Sea. Stochastic observation errors for the significant wave height, as well as bias and calibration errors, are derived for the model and the altimeter. The analysis indicates a slight overestimation of altimeter wave heights, which become more pronounced at higher sea states. The smallest stochastic errors are found for the in situ measurements. Different observation geometries of in situ data and altimeter tracks are furthermore analysed, considering 1-D and 2-D interpolation approaches. For example, the geometry of an altimeter track passing between two in situ wave instruments is considered with model data being available at the in situ locations. It is shown that for a sufficiently large sample, the errors of all data sources, as well as the error correlations of the model, can be estimated with the new method.


2011 ◽  
Vol 8 (1) ◽  
pp. 189-218 ◽  
Author(s):  
A. L. Gemmell ◽  
R. M. Barciela ◽  
J. D. Blower ◽  
K. Haines ◽  
Q. Harpham ◽  
...  

Abstract. As part of a large European coastal operational oceanography project (ECOOP), we have developed a web portal for the display and comparison of model and in-situ marine data. The distributed model and in-situ datasets are accessed via an Open Geospatial Consortium Web Map Service (WMS) and Web Feature Service (WFS) respectively. These services were developed independently and readily integrated for the purposes of the ECOOP project, illustrating the ease of interoperability resulting from adherence to international standards. The key feature of the portal is the ability to display co-plotted timeseries of the in-situ and model data and the quantification of misfits between the two. By using standards-based web technology we allow the user to quickly and easily explore over twenty model data feeds and compare these with dozens of in-situ data feeds without being concerned with the low level details of differing file formats or the physical location of the data. Scientific and operational benefits to this work include model validation, quality control of observations, data assimilation and decision support in near real time. In these areas it is essential to be able to bring different data streams together from often disparate locations.


2018 ◽  
Author(s):  
Stephanie de Villiers

Abstract. An annual and a seasonal biogeochemical climatology had been constructed for the Southern Benguela Upwelling System, from in situ data collected along a 12 station monitoring line, sampled at monthly intervals from 2001 to 2012. The monitoring line reaches a maximum offshore distance of almost 190 km, with monitoring station depths ranging from 27 to 1465 m. In addition to temperature, salinity and oxygen CTD profile data, archived monitoring data for the macro-nutrients (phosphate, nitrate + nitrite, silicate) and chlorophyll-a was evaluated. The climatologies exhibit clear spatial and seasonal variability patterns for all parameters, that yield important insight into the SBUS upwelling cycle. These data sets comprise valuable additions to our knowledge base, and will aid both future modelling efforts and studies of biogeochemical processes in upwelling systems. Data for the constructed climatologies have been made available via the PANGAEA Data Archiving and Publication database at http://doi.pangaea.de/10.1594/PANGAEA.882218.


2014 ◽  
Vol 5 (2) ◽  
pp. 3-11 ◽  
Author(s):  
Giancarlo Colmenares ◽  
Fadi Halal ◽  
Marek B. Zaremba

Abstract The probabilistic Ant Colony Optimization (ACO) approach is presented to solve the problem of designing an optimal trajectory for a mobile data acquisition platform. An ACO algorithm optimizes an objective function defined in terms of the value of the acquired data samples subject to different sets of constraints depending on the current data acquisition strategy. The analysis presented in this paper focuses on an environment monitoring system, which acquires in-situ data for precise calibration of a water quality monitoring system. The value of the sample is determined based on the concentration of the water pollutant, which in turn is obtained through processing of multi-spectral satellite imagery. Since our problem is defined in a continuous space of coordinates, and in some strategies each point is able to connect to any other point in the space, we adopted a hybrid model that involves a connection graph and also a spatial grid.


Sign in / Sign up

Export Citation Format

Share Document