Model Test Data Correlations With Fully Coupled Hull/Mooring Analysis for a Floating Wind Turbine on a Semi-Submersible Platform

Author(s):  
Bonjun Koo ◽  
Andrew J. Goupee ◽  
Kostas Lambrakos ◽  
Ho-Joon Lim

The DeepCwind floating wind turbine model tests were performed at MARIN (Maritime Research Institute Netherlands) with a model set-up corresponding to a 1:50 Froude scaling. In the model tests, the wind turbine was a scaled model of the National Renewable Energy Lab (NREL) 5MW, horizontal axis reference wind turbine supported by three different generic floating platforms: a spar, a semi-submersible and a tension-leg platform (TLP) (Ref. [1] and [2]). This paper presents validation of the MLTSIM-FAST [3] code with DeepCwind semi-submersible wind turbine model test results. In this integrated program, the turbine tower and rotor dynamics are simulated by the subroutines of FAST [4], and the hydrodynamic loads and mooring system dynamics are simulated by the subroutines of MLTSIM. In this study, fully coupled hull/mooring dynamics and second-order difference-frequency response are included in MLTSIM-FAST. The analysis results are systematically compared with model test results and show good agreement.

Author(s):  
Fei Duan ◽  
Zhiqiang Hu ◽  
Jin Wang

Wind power has great potential because of its clean and renewable production compared to the traditional power. Most of the present researches for floating wind turbine rely on the hydro-aero-elastic-servo simulation codes and have not been exhaustively validated yet. Thus, model tests are needed and make sense for its high credibility to master the kinetic characters of floating offshore structures. The characters of kinetic responses of the spar-type wind turbine are investigated through model test research technique. This paper describes the methodology for wind/wave model test that carried out at Deepwater Offshore Basin in Shanghai Jiao Tong University at a scale of 1:50. A Spar-type floater was selected to support the wind turbine in this test and the model blade was geometrically scaled down from the original NREL 5 MW reference wind turbine blade. The detail of the scaled model of wind turbine and the floating supporter, the test set-up configuration, the mooring system, the high-quality wind generator that can create required homogeneous and low turbulence wind, and the instrumentations to capture loads, accelerations and 6 DOF motions are described in detail, respectively. The isolated wind/wave effects and the integrated wind-wave effects on the floating wind turbine are analyzed, according to the test results.


Author(s):  
Amit Katarya

Dry tree risers on floating systems are presently supported either by TLPs or SPARs, both of which have limited payload capacity and no storage. A spread-moored barge having dry trees, storage and integrated drilling facilities has been developed. Model tests were performed for the riser tensioning system used on such a barge for offshore West Africa conditions. The risers are attached to a rectangular platform in a moon pool of the barge. This platform is supported by means of an articulated Rocker Arm System (RAS) located on the vessel main deck. The RAS has built-in counter weights hinged on pedestals fixed to the barge deck. In this arrangement gravity is used to tension the risers and when the barge heaves, the counterweights in the rocker arm system essentially decouple the barge vertical motion from the riser platform. This system provides a heave-restrained platform for dry trees with minimal dynamic loading of the risers. The model tests confirmed the feasibility of the new design. The paper describes the basic components of the gravity tensioning system. The model test set up and results from the model test are shown. Comparison of model test results with a fully coupled analytic model consisting of the barge and articulated tensioning system is also presented.


Author(s):  
Mehernosh Irani ◽  
Lyle Finn

An extensive model test program was conducted to explore the effectiveness of alternate strake designs to reduce Truss Spar VIV response. Different strake configurations were tested to minimize VIV response. The paper presents results of the model tests. The model test set-up is described, important parameters that are modeled (including hull and truss geometry, strake configuration, mass and mooring properties) and considerations of instrumentation and test methodology are discussed. The paper also describes the analysis of the test results and shows the effectiveness of new strake design. The present results are compared with VIV response of existing Truss Spars with conventional strake design.


Author(s):  
Mehernosh Irani ◽  
Lyle Finn

The state-of-the art in model testing for Vortex Induced Vibrations (VIV) of Spars is presented. Important issues related to Spar VIV model testing are highlighted. The parameters that need to be modeled including hull geometry, strake configuration, mass and mooring properties and, considerations of test set-up and instrumentation are discussed. Results are presented from model tests of an as-built Spar deployed in the Gulf of Mexico. It is shown that the model test results compare well with the VIV responses measured in the field.


Author(s):  
Bonjun J. Koo ◽  
Andrew J. Goupee ◽  
Richard W. Kimball ◽  
Kostas F. Lambrakos

Wind energy is a promising alternate energy resource. However, the on-land wind farms are limited by space, noise, and visual pollution and, therefore, many countries build wind farms near the shore. Until now, most offshore wind farms have been built in relatively shallow water (less than 30 m) with fixed tower type wind turbines. Recently, several countries have planned to move wind farms to deep water offshore locations to find stronger and steadier wind fields as compared to near shore locations. For the wind farms in deeper water, floating platforms have been proposed to support the wind turbine. The model tests described in this paper were performed at MARIN (maritime research institute netherlands) with a model setup corresponding to a 1:50 Froude scaling. The wind turbine was a scaled model of the national renewable energy lab (NREL) 5 MW horizontal axis reference wind turbine supported by three different generic floating platforms: a spar, a semisubmersible, and a tension-leg platform (TLP). The wave environment used in the tests is representative of the offshore in the state of Maine. In order to capture coupling between the floating platform and the wind turbine, the 1st bending mode of the turbine tower was also modeled. The main purpose of the model tests was to generate data on coupled motions and loads between the three floating platforms and the same wind turbine for the operational, design, and survival seas states. The data are to be used for the calibration and improvement of the existing design analysis and performance numerical codes. An additional objective of the model tests was to establish the advantages and disadvantages among the three floating platform concepts on the basis of the test data. The paper gives details of the scaled model wind turbine and floating platforms, the setup configurations, and the instrumentation to measure motions, accelerations, and loads along with the wind turbine rpm, torque, and thrust for the three floating wind turbines. The data and data analysis results are discussed in the work of Goupee et al. (2012, “Experimental Comparison of Three Floating Wind Turbine Concepts,” OMAE 2012-83645).


Author(s):  
Bonjun Koo ◽  
Andrew J. Goupee ◽  
Kostas Lambrakos ◽  
Richard W. Kimball

Wind energy is a promising alternate energy resource. However, the on-land wind farms are limited by space, noise, and visual pollution, and therefore many countries build wind farms near shore. Up to now, most of offshore wind farms have been built in relatively shallow water (less than 30m) with fixed tower type wind turbines. Recently, several countries plan to move wind farms to deep water offshore locations to find stronger and steadier wind fields as compared to near shore locations. For the wind farms in deeper water, floating platforms have been proposed to support the wind turbine. The model tests described in this paper were performed at MARIN (Maritime Research Institute Netherlands) with a model set-up corresponding to a 1:50 Froude scaling. The wind turbine was a scaled model of the National Renewable Energy Lab (NREL) 5MW, horizontal axis reference wind turbine supported by three different generic floating platforms: a spar, a semi-submersible and a tension-leg platform (TLP). The wave environment used in the tests is representative of the offshore in the state of Maine. In order to capture coupling between the floating platform and the wind turbine, the 1st bending mode of the turbine tower was also modeled. The main purpose of the model tests was to generate data on coupled motions and loads between the three floating platforms and the same wind turbine for the operational, design, and survival seas states. The data are to be used for calibration and improvement of existing design analysis and performance numerical codes. An additional objective of the model tests was to establish advantages and disadvantages among the three floating platform concepts on the basis of test data. The paper gives details of the scaled model wind turbine and floating platforms, the set-up configurations, and the instrumentation to measure motions, accelerations and loads as well as wind turbine rpm, torque and thrust for the three floating wind turbines. The data and data analysis results are the subject of another paper in this conference [1].


2018 ◽  
Vol 28 (1) ◽  
pp. 54-64 ◽  
Author(s):  
Friedemann Borisade ◽  
Christian Koch ◽  
Frank Lemmer ◽  
Po Wen Cheng ◽  
Filippo Campagnolo ◽  
...  

Author(s):  
Charles Lefevre ◽  
Yiannis Constantinides ◽  
Jang Whan Kim ◽  
Mike Henneke ◽  
Robert Gordon ◽  
...  

Vortex-Induced Motion (VIM), which occurs as a consequence of exposure to strong current such as Loop Current eddies in the Gulf of Mexico, is one of the critical factors in the design of the mooring and riser systems for deepwater offshore structures such as Spars and multi-column Deep Draft Floaters (DDFs). The VIM response can have a significant impact on the fatigue life of mooring and riser components. In particular, Steel Catenary Risers (SCRs) suspended from the floater can be sensitive to VIM-induced fatigue at their mudline touchdown points. Industry currently relies on scaled model testing to determine VIM for design. However, scaled model tests are limited in their ability to represent VIM for the full scale structure since they are generally not able to represent the full scale Reynolds number and also cannot fully represent waves effects, nonlinear mooring system behavior or sheared and unsteady currents. The use of Computational Fluid Dynamics (CFD) to simulate VIM can more realistically represent the full scale Reynolds number, waves effects, mooring system, and ocean currents than scaled physical model tests. This paper describes a set of VIM CFD simulations for a Spar hard tank with appurtenances and their comparison against a high quality scaled model test. The test data showed considerable sensitivity to heading angle relative to the incident flow as well as to reduced velocity. The simulated VIM-induced sway motion was compared against the model test data for different reduced velocities (Vm) and Spar headings. Agreement between CFD and model test VIM-induced sway motion was within 9% over the full range of Vm and headings. Use of the Improved Delayed Detached Eddy Simulation (IDDES, Shur et al 2008) turbulence model gives the best agreement with the model test measurements. Guidelines are provided for meshing and time step/solver setting selection.


2021 ◽  
Author(s):  
Arjen Koop ◽  
Pierre Crepier ◽  
Sebastien Loubeyre ◽  
Corentin Dobral ◽  
Kai Yu ◽  
...  

Abstract Estimates for roll damping are important input parameters for simulation studies on vessels operating at sea, e.g. FPSO mooring in waves, wind and current, workability and operability investigations, Dynamic Position studies, ship-to-ship operations and safety studies of vessels. To accurately predict the motions of vessels this quantity should be determined with confidence in the values. Traditionally, model experiments in water basins using so-called decay tests are carried out to determine the roll damping. With recent advancements in CFD modelling, the offshore industry has started using CFD as an alternative tool to compute the roll damping of FPSO’s. In order to help adopt CFD as a widely accepted tool, there is a need to develop confidence in CFD predictions. Therefore, a practical CFD modelling practice is developed within the Reproducible CFD JIP for roll decay CFD simulations. The Modelling Practice describes the geometry modelling, computational mesh, model set-up and post-processing for these type of CFD calculations. This modelling practice is verified and validated by three independent verifiers against available model test data. This paper provides an overview of the developed modelling practice and the calculated CFD results from the verifiers. The CFD modelling practice is benchmarked against available model test results for a tanker-shaped FPSO. By following this modelling practice, the CFD predictions for the equivalent linear damping coefficient and natural period of the roll motions are within 10% for all verifiers and within 10% from the model test results. Therefore, we conclude that when following the developed modelling practice for roll decay simulations, reliable, accurate and reproducible results can be obtained for the roll damping of tanker-shaped FPSOs.


Sign in / Sign up

Export Citation Format

Share Document