moon pool
Recently Published Documents


TOTAL DOCUMENTS

30
(FIVE YEARS 5)

H-INDEX

4
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Nikhil Prakash Joshi ◽  
Jonathan Lewis Brewer ◽  
Christopher John Rose

Abstract During the annual In-Service Inspection of a spar hull, several regions of pitting corrosion on the upper portion of the north and south moon pool external wall plating were identified. The moon pool walls are constructed as typical stiffened panel structures. Visual, ultrasonic (UT), and pulsed eddy current (PEC) inspections indicated regions of corrosion with roughly 40% to 70% averaged localized wall loss. This paper discusses the analytical assessment of the structure to determine the effect of the corrosion on the structural integrity of the moon pool wall and any similar structural panel. To determine the impact of corrosion on the stiffened panel integrity, a finite element (FE) based analysis approach is used to perform a comparative assessment of the "as-built" and "corroded" configuration of the moon pool wall. The nominal plate and stiffener thicknesses are modeled in the "as-built" configuration; whereas, the measured plate thickness from the inspection is modeled in the "corroded" configuration. The structure is subjected to design loads based on the storm damaged design condition. The analysis is performed by uniformly increasing the applied loads until failure occurs, maintaining a constant ratio between the nominal loads. Two different analyses are performed as a part of the strength assessment: (1) a linear-elastic eigenvalue analysis to estimate the elastic buckling capacity and mode shapes of the structure and (2) an elastic-plastic post-buckling analysis to estimate the ultimate capacity of the structure. In addition, the results from the linear-elastic eigenvalue analysis are compared to the results from analytical buckling calculations. The analysis results indicate that the corrosion reduces the elastic plate buckling capacity significantly. However, the overall capacity of the stiffened panel is not significantly reduced. Therefore, from a global strength perspective, the stiffened panel remains acceptable in its corroded condition. The upper portion of the moon pool wall is typically fatigue insensitive in spars. Therefore, the effect of the corrosion wall loss on the fatigue performance was not assessed. Since there is limited guidance in design and assessment codes for assessing corroded stiffened panels, this approach can be used to address future stiffened panel corrosion wall loss. In addition, this method allows for inclusion of future corrosion allowance, if applicable. Determining the capacity of corroded panels using FEA-based numerical methods, like those described in this paper, allows the operators to manage their risks, repair costs, and inspection frequency by determining the actual capacity of the damaged components. This allows the operators to determine the appropriate mitigation measures based on a quantitative risk calculation.


2021 ◽  
Vol 75 (1) ◽  
Author(s):  
Michael L. Zettler

AbstractIn 2019 the RV Meteor cruised from Guadalupe in April/May to Cape Verde in June/July and to Namibia in August/September. The distance is about 10,000 km. The ship has a moon pool for installation of instruments. In Cape Verde we had a first glimpse of the already sparsely populated moon pool. We reached Namibian waters in mid-August. In mid-September, 47 days later and 6000 km south, the ship's moon pool was sampled in the port of Walvis Bay. 13 different taxa could be identified belonging to two phyla, four classes, six orders and 10 families. Most of these species have not yet been observed in the port or in the adjacent areas and are new records for the entire Namibian coast. The goose barnacles Conchoderma auritum (Linnaeus, 1767), Conchoderma virgatum Spengler, 1789 and Lepas anatifera Linnaeus, 1758 were particularly noticeable. They were only surpassed by the large number of amphipods. The species Ericthonius brasiliensis (Dana, 1853), Jassa marmorata Holmes, 1905, Stenothoe senegalensis Krapp-Schickel, 2015 and Paracaprella pusilla Mayer, 1890 are particularly noteworthy here. In addition, the pycnogonid species Endeis straughani Clark, 1970 and the titan acorn barnacle Megabalanus coccopoma (Darwin, 1854) should be mentioned, which occurred very frequently as well. The present study shows, on the one hand, an example of the transatlantic spread of bioinvasive species by ships as vectors and, on the other hand, a convenient method for sampling ship hulls.


Author(s):  
Hongguan Lyu ◽  
Jiayang Gu ◽  
Yanwu Tao ◽  
Zhongyu Zhang

Abstract Moonpools on drilling vessels are structures located at the mid-ship position to facilitate drilling and other marine operations. The existence of the moonpools is prone to result in intense resonant fluid behaviors even other unexpected violent nonlinear impact on the flow system under external excitations, especially for those types with one or more recesses. The present study focuses on the resonant fluid behaviors and the induced violent nonlinear effects so-called slamming in a moonpool with a recess within the frameworks of both theoretical and numerical investigations. The natural frequencies of the piston mode and the first-three modes of the studied moonpool are approximated based on the theoretical formulas extracted from the linear potential flow theory. Furthermore, the calculated frequency of piston mode are carried out as the external wave excitations combined with varying current velocity to investigate the slamming effects at the typical locations such as the wall of the moonpool and the bottom of the recess. Finally, the characteristics of the slamming pressure both in space and time are discussed in detail based on the RANS-based numerical simulations. The result shows that the resonant fluid behaviors under the wave-current interactions are greatly different from the wave-only excitations. Moreover, intense slamming occur in a moon-pool with a recess under some particular wave-current interactions due to the shallow water effects in the recess region and the phenomenon of energy transfer. The phenomenon of slamming must be treated with special cautions in practical engineering because of the fact that some induced adverse effects could weaken the hydrodynamic performance of the drilling vessel, as well as the structural strength of the moonpool.


2020 ◽  
Author(s):  
Wen-Hsuan Yang ◽  
Ray-Yeng Yang ◽  
Tzu-Ching Chang

<p>The global wind energy has developed over 30 years. However, as the offshore wind power installed within 50 to 60 meters of water depth is gradually saturated. Offshore wind power installations are progressively shifting from nearshore to offshore. With the increment of water depth, the difficulties and the cost of the offshore wind power installations are also increased, makes the fixed-bottom type of structures less favorable in deep water areas and accelerate the development of the floating type offshore wind platforms. Floating offshore wind platforms can be classified into main three types: spar buoy, semi-submersible, tension-leg platform (TLP) according to reaching stability. In addition to these types, a barge-type floating platform, a new design concept, can reduce the dynamic motion of the platform by its moon pool. In this study, the hydrodynamic performance of a floating barge platform with a moon pool supports an NREL 5MW wind turbine and with a mooring system at a water depth of 50 meters was investigated. This numerical simulation was applied to analyze the hydrodynamic performance of the platform using ANSYS Aqwa software. Experimental tests in a flat water tank were conducted at National Cheng Kung University, Tainan Hydraulics Laboratory (THL). The model is a 1:64 scaled barge platform and the turbine is scaled down from the NREL 5MW. Three tests of the platform were conducted, including the free decay test, regular wave test, irregular wave test with wind operation and parking. The experimental data was analyzed to get the natural period through the free decay test. The numerical simulation results were compared with the 1:64 scaled experiment to observe the motions and Response Amplitude Operator (RAO) of surge, heave and pitch motions on the barge platform with moon pool. The floating barge platform, designed in this study, will be tested in the open sea to ensure it can withstand - extreme wave conditions such as typhoons.</p>


Author(s):  
Byoung-mo Kang ◽  
◽  
Woo-jun Oh ◽  
Hyun-ho Na ◽  
Ju-seok Choi

2017 ◽  
Vol 23 (1) ◽  
pp. 30-41 ◽  
Author(s):  
Paula Suemy Arruda Michima ◽  
Hiroshi Kawabe
Keyword(s):  

2016 ◽  
Vol 23 (s1) ◽  
pp. 25-31 ◽  
Author(s):  
W.C. Zhang ◽  
H.X. Liu ◽  
X.W. Zhang ◽  
L. Zhang

Abstract In order to effectively extract and maximize the energy from ocean waves, a new kind of oscillating-body WEC (wave energy converter) with moon pool has been put forward. The main emphasis in this paper is placed on inserting the damping into the equation of heaving motion applied for a complex wave energy converter and expressions for velocity potential added mass, damping coefficients associated with exciting forces were derived by using eigenfunction expansion matching method. By using surface-wave hydrodynamics, the exact theoretical conditions were solved to allow the maximum energy to be absorbed from regular waves. To optimize the ability of the wave energy conversion, oscillating system models under different radius-ratios are calculated and comparatively analyzed. Numerical calculations indicated that the capture width reaches the maximum in the vicinity of the natural frequency and the new kind of oscillating-body WEC has a positive ability of wave energy conversion.


Author(s):  
Liqin Liu ◽  
Yu Qiu ◽  
Yan Li

The hydrodynamic coefficients and heaving damping of a truss spar platform were studied by the computational fluid dynamics (CFD) method with considering the semiclosed moon pool. A partial model was established to investigate the added mass and viscous damping of platform heaving; a full model and a simplified model were established to study the nonlinear damping of platform heaving. The influences of opening ratios of moon pool on the added mass and viscous damping of platform heaving were analyzed. It is found that the natural period and the heaving added mass of the platform increase if the semiclosed moon pool is considered. Different opening ratios of the moon pool will lead to different heaving damping of the platform and dynamic pressure acting on the guide plate of the moon pool. In practice, an optimal opening ratio of the moon pool can be designed. The numerical results were verified by comparing with the results of model experiments.


Sign in / Sign up

Export Citation Format

Share Document