Fatigue Crack Propagation of Deepwater Structures Under Cyclic Compression Based on Extended McEvily Model

Author(s):  
Guang-en Luo ◽  
Jia-huan Dong

The extended McEvily model is adopted to predict the fatigue life of deepwater structures under cyclic compression. The three dimensional finite element analysis is performed to estimate the residual stress distribution along the crack surface during the crack propagation under cyclic compression. Then the stress intensity factors and crack growth rate are achieved based on extended McEvily model. The doubled edged specimen under cyclic compressive loading is taken for example to illustrate the analysis procedure, including fatigue crack growth rate prediction by Artificial Neural Networks (ANN), parameters estimation method of the extended McEvily model, calculation of the stress intensity factor and numerical simulation of fatigue crack propagation. By comparing the predicted results and the experimental results, it is found that the numerical simulation of fatigue crack growth under cyclic compression based on extended McEvily model is reasonable and feasible.

2014 ◽  
Vol 1004-1005 ◽  
pp. 142-147
Author(s):  
Ming Liu ◽  
Kun Zhang ◽  
Sheng Long Dai ◽  
Guo Ai Li ◽  
Min Hao ◽  
...  

The fatigue crack propagation behaviors of an Al-Cu-Mg alloy are investigated in different environments and with varying stress ratios. Fatigue experiments are carried out via a fatigue crack growth rate test in laboratory air, a 3.5% (mass fraction) NaCl solution and a tank seeper. The results show that a corrosion environment has an obvious influence on the fatigue crack growth rate, and the degrees of influence of the two different corrosive environments are basically identical. When the stress ratio is R = 0.5 and 0.06 with a decrease of the stress intensity factor, the difference in the crack propagation rates for the corrosion and air environments gradually increases. However, the corrosion acceleration in each stage of crack propagation is obvious while R=−1.


2018 ◽  
Vol 165 ◽  
pp. 03009
Author(s):  
Luis Borja Peral ◽  
Sergio Blasón ◽  
Alfredo Zafra ◽  
Cristina Rodríguez ◽  
Javier Belzunce

In order to select the most appropriate steel to deal with pressurized hydrogen during long times, the fatigue crack propagation rate of quenched and tempered 2.25Cr1Mo and 2.25Cr1Mo0.3V steel grades was evaluated by means of tests performed on thermally pre-charged specimens in a hydrogen reactor at 195 bar and 450°C during 21 hours. Cylindrical samples to measure the hydrogen content and their desorption kinetics at room temperature and compact tensile specimens to determine the fatigue crack growth rate were used. Finally, scanning electronic microscopy was used in the study of fracture surfaces. Using the aforementioned pre-charging conditions, significant amounts of hydrogen were introduced, being much larger in the 2.25Cr1Mo0.3V steel grade (vanadium carbides provide strong hydrogen tramps). Regarding fatigue tests, the fatigue crack growth rate was increased notably due to the presence of hydrogen in the 2.25Cr1Mo grades for frequencies lower than 10 Hz. On the other hand, the presence of vanadium carbides has significantly improved the fatigue crack propagation performance in the presence of internal hydrogen.


1977 ◽  
Vol 99 (3) ◽  
pp. 459-469 ◽  
Author(s):  
A. D. Wilson

The influence of steelmaking practice on the fatigue crack propagation behavior of A533B low alloy plate steels is examined. Conventional practice, calcium-treated and electroslag-remelted steels were investigated in 6 specimen orientations. A significant improvement in the isotropy of fatigue crack growth rates and a consistent overall improvement in fatigue crack growth rate were found in going from the conventional practice, to the calcium-treated, to the electroslag-remelted materials. The fatigue crack growth rate differences within a material and between materials were attributed to material differences in nonmetallic inclusion quantities and morphologies.


Author(s):  
Kokleang Vor ◽  
Catherine Gardin ◽  
Christine Sarrazin-Baudoux ◽  
Jean Petit ◽  
Claude Amzallag

The scope of this study is to investigate the effect of tensile prestrain on crack growth behavior in a 304L stainless steel. Fatigue crack propagation tests were performed on single-edge notched tension (SENT) raw specimens (0% of prestrain) and on prestrained specimens (2% and 10%). On one hand, it is found that the different levels of prestrain exhibit no significant influence on crack propagation in the high range of Stress Intensity Factor (SIF), where there is no detectable crack closure. On the other hand, a clear effect of prestrain on crack growth rate can be observed in the near threshold region where closure is detected. Thus, it can be concluded that the prestrain mainly affects the crack growth rate through its influence on the crack closure.


Author(s):  
Yuichiro Nomura ◽  
Katsumi Sakaguchi ◽  
Hiroshi Kanasaki

Japanese reference fatigue crack growth rate (FCGR) curves for ferrite and austenitic stainless steels in light water reactor environments are prescribed in JSME S NA1-2004. However, similar reference FCGR curve for nickel-based alloys for pressurized water reactors (PWR) are not prescribed. In order to propose reference FCGR curve for nickel-based alloys, under high stress ratio and low rising time, the effect of the welding method, the effect of specimen orientation and low stress intensity range fatigue crack propagation tests of nickel-based alloys 600, 132 and 82 weld metals were conducted as part of the Environmental Fatigue Test (EFT) projects of Japan Nuclear Energy Safety Organization (JNES). The results show that the effect of heat, welding methods, specimen orientations and environmental water conditions on the FCGR was not significant for Alloys 600, 132 and 82. The FCGR increased with increase of stress ratio, and cyclic loading frequency. According to the procedure for determining the reference FCGR curve of austenitic stainless steels in PWR environment of nickel-based alloys is proposed based on the reference data and the results of this study. The reference FCGR curve for nickel-based alloys in PWR environment are determined as a function of stress intensity factor range, temperature, load rising time and stress ratio.


2014 ◽  
Vol 891-892 ◽  
pp. 1657-1662
Author(s):  
Lei Wang ◽  
Yang Liu ◽  
Xiu Song ◽  
Guo Hua Xu ◽  
Guang Pu Zhao

Fatigue crack propagation behaviors coupled with the microstructure evolution of a hardworking Ni-based superalloy after long-time aging at 1023K were studied, to provide fundamental data for the fatigue life prediction of the superalloy. The results show that the microstructures remarkably change and the fatigue crack propagation resistance decreases with the aging time prolongs. It is found that the precipitation and the growth of topologically close packed (TCP) phases as well as the coarsening of γ' phase and carbides on grain boundaries can significantly affect the fatigue crack growth rate. On one hand, coarsened γ' phase and carbides at grain boundaries block dislocation movements near the crack tip, thus the fatigue crack propagation is hindered in near-threshold region and Paris region. On the other hand, the stress concentration accumulates continually with carbides precipitation increases, so that the grain boundaries become the main fatigue crack propagation rout. As well as, the effect of the TCP phases on the fatigue crack propagation behavior ascribes to the size and the distribution of TCP phases. Very small quantity of TCP phases contribute to pinning dislocation and enlarging fatigue crack propagation absorption energy, but high quantity of TCP phases with short rod shape changed to the needle, which gradually precipitate uniformly within the grain after 1000h besides on grain boundaries in the earlier aging, leads to much higher stress concentration degree. Those discussed above are the most important reasons why the fatigue crack growth rate increases after long-time aging.


2008 ◽  
Vol 378-379 ◽  
pp. 355-370 ◽  
Author(s):  
Andrea Carpinteri ◽  
Andrea Spagnoli ◽  
Sabrina Vantadori

As is well-known, fatigue limit, threshold stress intensity range and fatigue crack growth rate are influenced by the specimen or structure size. Limited information on size effect is available in the literature. In the present paper, by employing some concepts of fractal geometry, new definitions of fatigue limit, fracture energy and stress intensity factor, based on physical dimensions different from the classical ones, are discussed. Then, size-dependent laws for fatigue limit, threshold stress intensity range and fatigue crack growth rate are proposed. Some experimental results are examined in order to show how to apply such theoretical scaling laws.


MRS Bulletin ◽  
1989 ◽  
Vol 14 (8) ◽  
pp. 25-36 ◽  
Author(s):  
P.K. Liaw

Fracture mechanics technology is an effective tool for characterizing the rates of fatigue crack propagation. Generally, fatigue crack growth rate (da/dN) in each loading cycle can be presented as a function of stress intensity range (ΔK), where ΔK = Kmax — Kmin, Kmax and Kmin are the maximum and the minimum stress intensities, respectively. A typical fatigue crack growth rate curve of da/dN versus ΔK can be divided into three regimes, i.e., Stage I (near-threshold), Stage II (Paris), and Stage III (fast) crack growth regions, as shown in Figure 1.Depending on the region of crack growth, fatigue crack growth behavior can be sensitive to microstructure, environment, and loading conditions [e.g., R (load) ratio = Kmin / Kmax]. In the nearthreshold region, fatigue crack growth rates are very slow, ranging from approximately 10−10 to 10−8 m/cycle. In this region, the fatigue crack growth rate curve eventually reaches a threshold stress intensity range, ΔKth, below which the crack would not grow or grow at an extremely slow rate. Typically, the value of ΔKth is operationally defined as the stress intensity range which gives a corresponding crack growth rate of 10−10 m/cycle. In the nearthreshold region, the influence of microstructure, environment, and load ratio on the rates of crack propagation is very significant.


Sign in / Sign up

Export Citation Format

Share Document