Numerical Prediction of Ship Hydrodynamic Derivatives in Close Proximity to a Vertical Bank and Maneuvering Stability Analysis

2016 ◽  
Author(s):  
Han Liu ◽  
Ning Ma ◽  
Xiechong Gu

As bank effect has a remarkable influence on the maneuverability of a ship proceeding close to a vertical bank, the assessment of ship maneuvering stability is of great importance. The hydrodynamic derivatives of a ship can reflect the change of the ship’s maneuverability and they are determined with the method of planar motion mechanism (PMM) tests. This paper presents a numerical way to simulate the PMM captive model tests for the ship KVLCC2. A general purpose viscous flow solver was adopted to solve unsteady Reynolds averaged Navier Stokes (RANS) equations in conjunction with a RNG k-ε turbulence model. A hybrid dynamic mesh technique is developed to update the mesh volume around the ship hull when the ship is undertaking pure yaw motions and it turns out efficient and effective to solve the limitation of small ship-bank distance to the mesh configuration and remeshing.. The numerical simulations and the accuracy of the numerical method was validated in comparison with the results of PMM tests in a circulating water channel. Then a series of distances between ship and bank together with different water depths were set for simulating the PMM tests of the KVLCC2 model in proximity to a vertical bank. The first order hydrodynamic derivatives of the ship were analyzed from the time history of lateral force and yaw moment according to the multiple-run simulating procedure. The values of derivatives in different lateral proximities to the bank and variant water depths were compared and it showed some favorable trends for predicting the ship’s maneuverability in the restricted waterways. For example, the influence of velocity derivatives on lateral force reduces while that of velocity derivatives on yaw moment strengthens and this is partly due to the suction force and bow-out moment caused by bank wall effect. The straight line stability and directional stability in terms of the calculated hydrodynamic derivatives were also discussed based on the MMG model for ship maneuvering. Results indicate that the ship is inherently unstable without control and the enhancement of bank effect makes the condition even worse. Moreover, a stable or unstable zone of PD controller parameters focusing on the directional stability was illustrated and setting the values of controller parameters in the range of “Control with high sensitivity” is recommended for cases of the ship navigating in very close proximity to a bank.

2021 ◽  
Vol 28 (2) ◽  
pp. 46-53
Author(s):  
Radosław Kołodziej ◽  
Paweł Hoffmann

Abstract Prediction of the maneuvering characteristics of a ship at the design stage can be done by means of model tests, computational simulations or a combination of both. The model tests can be realized as a direct simulation of the standard maneuvers with the free running model, which gives the most accurate results but is also the least affordable, as it requires a very large tank or natural lake, as well as the complex equipment of the model. Alternatively, a captive model test can be used to identify the hydrodynamic characteristics of the hull, which can be used to simulate the standard maneuvers with the use of dedicated software. Two types of captive model tests are distinguished: circular motion tests (CMT) and planar motion mechanism tests (PMM). The paper presents an attempt to develop a computational method for ship maneuverability prediction in which the hydrodynamic characteristics of the hull are identified by means of computational fluid dynamics (CFD). The CFD analyses presented here directly simulate the circular motion test. The resulting hull characteristics are verified against the available literature data, and the results of the simulations are verified against the results of free running model tests. Reasonable agreement shows the large potential of the proposed method.


Author(s):  
Rameesha Thayale Veedu ◽  
Parameswaran Krishnankutty

Evaluation of maneuverability of a ship at the early design stages is necessary for ensuring safety of its voyage. IMO recommends the test speed or approach speed for the maneuvering predictions as 90–100% of the service speed of the vessel. The confined model tests for ship maneuvering assessment are usually conducted at low speeds and the hydrodynamic derivatives obtained from these tests are used in the equation of motion even when vessel operates at much higher speeds. But the hydrodynamic derivatives and consequently the trajectory predicted using these derivatives differ substantially from the actual maneuvering conditions. Hence the dependency of the derivatives on vessel speed needs to be understood properly to get the correct estimate of the vessel trajectory prediction. This paper investigates the effect of vessel speed (Fn) on hydrodynamic characteristics of a container ship. Straightline test and horizontal planar motion mechanism (HPMM) tests are conducted for a container ship model for different speeds in a CFD environment.


2014 ◽  
Vol 38 (2) ◽  
pp. 97-103 ◽  
Author(s):  
Jin-Woo Jung ◽  
Jae-Hun Jeong ◽  
In-Gyu Kim ◽  
Seung-Keon Lee

2006 ◽  
Vol 50 (04) ◽  
pp. 311-333 ◽  
Author(s):  
S. Sutulo ◽  
C. Guedes Soares

The paper provides the results of model tests planned with an optimized experimental design method. Captive-model tests have been carried out according to such a design on a computerized planar-motion carriage with a model of a fast catamaran with five varying factors (drift angle, rate-of-yaw amplitude, sinkage, trim and heel angles) and with all six force/moment components measured at each run. The measured values were used after preprocessing for construction of polynomial regression models for all force components acting upon the catamaran's hulls. It is demonstrated that the optimized experimental design method allows rather complicated mathematical models for maneuvering hydrodynamics forces to be obtained from captive model tests at a reasonable level of effort.


2013 ◽  
Vol 155 (A2) ◽  

For a ship navigating along a bank in restricted waters, it is usually accompanied by obvious bank effect which may cause ship-bank collision. In order to avoid collision, it is necessary to provide control force and moment by using control devices such as a rudder. In this paper, CFD method is applied to numerically simulate the viscous flow around a ship appended with a rudder sailing along a bank. Systematical simulations are carried out for the hull-rudder system with different rudder angles at different ship-bank distances and water depths. The flow field features and the hydrodynamic forces of the hull-rudder system are obtained and analysed. This study is of significance for revealing the physical mechanism behind the bank effect and providing guidance for ship steering and control in restricted waters.


2020 ◽  
pp. 1-10
Author(s):  
John C. Daidola

The effects of hull roughness on ship maneuvering characteristics are investigated. The hydrodynamic derivatives in the equations of motion for surface vessel maneuvering are modified to incorporate roughness of the hull and rudder. Vessel lifetime roughness profiles are postulated based on construction, coatings, operation, and maintenance for a vessel life of 25 years. These are then applied to the turning maneuver for single screw cargo ships with block coefficients from .60 to .80. The implications for naval missions are discussed.


2020 ◽  
Vol 8 (11) ◽  
pp. 927
Author(s):  
Jin Huang ◽  
Chen Xu ◽  
Ping Xin ◽  
Xueqian Zhou ◽  
Serge Sutulo ◽  
...  

The hydrodynamic interaction induced by the complex flow around a ship maneuvering in restricted waters has a significant influence on navigation safety. In particular, when a ship moves in the vicinity of a bank, the hydrodynamic interaction forces caused by the bank effect can significantly affect the ship’s maneuverability. An efficient algorithm integrated in onboard systems or simulators for capturing the bank effect with fair accuracy would benefit navigation safety. In this study, an algorithm based on the potential-flow theory is presented for efficient calculation of ship-bank hydrodynamic interaction forces. Under the low Froude number assumption, the free surface boundary condition is approximated using the double-body model. A layer of sources is dynamically distributed on part of the seabed and bank in the vicinity of the ship to model the boundary conditions. The sinkage and trim are iteratively solved via hydrostatic balance, and the importance of including sinkage and trim is investigated. To validate the numerical method, a series of simulations with various configurations are carried out, and the results are compared with experiment and numerical results obtained with RANSE-based and Rankine source methods. The comparison and analysis show the accuracy of the method proposed in this paper satisfactory except for extreme shallow water cases.


2016 ◽  
Vol 96 ◽  
pp. 366-376 ◽  
Author(s):  
Qihu Sheng ◽  
Fengmei Jing ◽  
Liang Zhang ◽  
Nianfu Zhou ◽  
Shuqi Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document