scholarly journals Effect of the Beam Element Geometric Formulation on the Wind Turbine Performance and Structural Dynamics

Author(s):  
Virgile Delhaye ◽  
Madjid Karimirad ◽  
Petter Andreas Berthelsen

In this paper, the original double symmetric cross section beam formulation in RIFLEX used to model the blades is compared against a newly implemented generalised beam formulation, allowing for eccentric mass, shear and elastic centres. The generalised beam formulation is first evaluated against an equivalent ABAQUS beam model (Using the generalised beam formulation implemented in ABAQUS) which consists of DTU 10MW RWT (reference wind turbine) blade in static conditions. A static displacement is applied to the tip, which is close to an operating load. The results appear very similar and ensure that the implementation is correct. The extended beam formulation is afterwards used on the Land-based 10MW turbine from DTU with external controller. This case study aims at evaluating the effect of the newly implemented formulation on realistic, flexible structure. During the study, the blades were discretised using both the old and new formulation, and dynamic simulations were performed. The effect of the beam formulation was evaluated using several wind conditions that are thought to be characteristic of operating conditions. Results show slight difference between two formulations but could be more significant for next generation flexible blades.

2021 ◽  
Author(s):  
Davide Astolfi ◽  
Gabriele Malgaroli ◽  
Filippo Spertino ◽  
Angela Amato ◽  
Andrea Lombardi ◽  
...  

2019 ◽  
Vol 11 (11) ◽  
pp. 168781401989211
Author(s):  
Deyaa Nabil Elshebiny ◽  
Ali AbdelFattah Hashem ◽  
Farouk Mohammed Owis

This article introduces novel blade tip geometric modification to improve the aerodynamic performance of horizontal-axis wind turbine by adding auxiliary cascading blades toward the tip region. This study focuses on the new turbine shape and how it enhances the turbine performance in comparison with the classical turbine. This study is performed numerically for National Renewable Energy Laboratory Phase II (non-optimized wind turbine) taking into consideration the effect of adding different cascade configurations on the turbine performance using ANSYS FLUENT program. The analysis of single-auxiliary and double-auxiliary cascade blades has shown an impact on increasing the turbine power of 28% and 76%, respectively, at 72 r/min and 12.85 m/s of wind speed. Knowing that the performance of cascaded wind turbine depends on the geometry, solidity and operating conditions of the original blade; therefore, these results are not authorized for other cases.


2021 ◽  
Author(s):  
Ehsan Sohrabi ◽  
Somayeh Sohrabi ◽  
Davood Iranshahi ◽  
Majid Sarmadi ◽  
Mostafa Keshavarz Moraveji

Abstract Since the operating conditions of the cooling tower units provide such a suitable environment for the growth of bacteria and algae, taking measures for the disinfection process is strongly recommended. The cooling tower unit is proceeded by RO and the disinfection strategy is sodium hypochlorite, combined with this new formulation. The sampling result revealed that bacteria counts from the effluent of the cooling tower are 2600 CFU/ml while the microbial load of the water in the pond is 220 CFU/ml. Herein, two type formulations are introduced for cooling tower output stream while the pond water comes along with a NaOCl injection. The dosage of A: Glucose Oxidase, B: ammonium persulfate, and C: Amoxicillin, and D: the order of use are chosen as the four independent variables whose effects and their binary interactions on microbial load and disinfection efficiency were investigated via Box–Behnken design (BBD) combined with response surface methodology (RSM). The ANOVA results show that the most significant variable is amoxicillin in the presence of bleach. Meanwhile, high values for R2 > 0.99 and the model F-value 45.64 in addition to diagnostic tests confirmed the reliability of the model. Several solutions have been introduced as optimum formulations. The pre-scale up and economic considerations have been included.


Energies ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2636
Author(s):  
Zhaoyong Mao ◽  
Guangyong Yang ◽  
Tianqi Zhang ◽  
Wenlong Tian

The building-integrated wind turbine is a new technology for the utilization of wind energy in cities. Previous studies mainly focused on the wind turbines mounted on the roofs of buildings. This paper discusses the performance of Savonius wind turbines which are mounted on the edges of a high-rise building. A transient CFD method is used to investigate the performance of the turbine and the interaction flows between the turbine and the building. The influence of three main parameters, including the turbine gap, wind angle, and adjacent turbines, are considered. The variations of the turbine torque and power under different operating conditions are evaluated and explained in depth. It is found that the edge-mounted Savonius turbine has a higher coefficient of power than that operating in uniform flows; the average Cp of the turbine under 360-degree wind angles is 92.5% higher than the turbine operating in uniform flows. It is also found that the flow around the building has a great impact on turbine performance, especially when the turbine is located downwind of the building.


2018 ◽  
Author(s):  
Mads H. Aa. Madsen ◽  
Frederik Zahle ◽  
Niels N. Sørensen ◽  
Joaquim R. R. A. Martins

Abstract. The wind energy industry relies heavily on CFD to analyze new turbine designs. To utilize CFD further upstream the design process where lower fidelity methods such as BEM are more common, requires the development of new tools. Tools that utilize numerical optimization are particularly valuable because they reduce the reliance on design by trial and error. We present the first comprehensive 3D CFD adjoint-based shape optimization of a modern 10&thisp;MW offshore wind turbine. The optimization problem is aligned with a case study from IEA Wind Task 37, making it possible to compare our findings with the BEM results from this case study, allowing us to determine the value of design optimization based on high-fidelity models. The comparison shows, that the overall design trends suggested by the two models do agree, and that it is particularly valuable to consult the high-fidelity model in areas such as root and tip where BEM is inaccurate. In addition, we compare two different CFD solvers to quantify the effect of modeling compressibility and to estimate the accuracy of the chosen grid resolution and order of convergence of the solver. Meshes up to 14 · 106 cells are used in the optimization whereby flow details are resolved. The present work shows that it is now possible to successfully optimize modern wind turbines aerodynamically under normal operating conditions using RANS models. The key benefit of a 3D RANS approach is that it is possible to optimize the blade planform and cross-sectional shape simultaneously, thus tailoring the shape to the actual 3D flow over the rotor, which is particularly important near the root and tip of the blade. This work does not address evaluation of extreme loads used for structural sizing, where BEM-based methods have proven very accurate, and therefore will likely remain the method of choice.


Author(s):  
A. Bennouk ◽  
A. Nejmi ◽  
M. Ramzi

<p>This paper presents an approach to identify risks for different failures that could affect wind turbine performance, and reduce the measured annual electrical production (MAEP). The proposed approach is based on FMECA (failure mode, effects and criticality analysis) and wind turbine performance study. We present firstly the methodology of performance calculation based on IEC 61400 standard, then we identify the energy gap between the MAEP and WAEP for the case study, we present an extended and reviewed FMECA, by introducing definition of factors related to environment, health and security. As a result we present an actions plan for similar failures deduced from wind performance study and risk-based FMECA, in order to reduce failure risks and optimize production by consequence. The case study is a 2.3 MW onshore wind turbine, different data that are used in this paper were collected from SCADA and lidar.</p>


2020 ◽  
Vol 197 ◽  
pp. 02005
Author(s):  
Paola Colombo ◽  
Rossano Scoccia ◽  
Marcello Aprile ◽  
Mario Motta ◽  
Livio Mazzarella

Robust and fast dynamic simulation tools are crucial for the sizing of the components of complex HVAC system and for the definition of the optimal control strategy. In this work, a first step towards the extension of OpenBPS, a new building energy performance simulation tool, to the dynamic simulation of HVAC systems is presented. In particular, the building model has been reduced to a Resistors-Capacitors (RC) network and OpenBPS has been used for the identification of the parameters of the grey-box model. Indeed, the reduction and identification of the building energy model is the fundamental step for extension of the tool to perform dynamic simulations of complex HVAC systems with the advantage of low computational load, thus suitable for parametric yearly simulations and control strategy analyses. The toolkit of identification and cross validation of a minimalist RC network is presented in this paper, discussing the results obtained for a case study building under study in the European project Heat4Cool founded by Horizon 2020 programme. The identified model demonstrated a good accuracy in the estimation of the room temperature under different tests settings representative of the actual operating conditions.


Sign in / Sign up

Export Citation Format

Share Document