System Based Prediction of Ship’s Manoeuverability in Varying Water Depth Area

Author(s):  
Shi He ◽  
Atilla Incecik ◽  
Zhiming Yuan ◽  
Paula Kellett

Abstract In this study, numerical prediction of a ship maneuvering in calm water area with varying water depth are carried out to investigate the shallow water effect on ship’s maneuverability. The system based prediction approach is adopted by establishing a 3 degrees of freedom (DOF) mathematical model based on the modular concept. The lateral added mass and added moment of inertia are obtained by a strip theory method. Other coefficients including the longitudinal added mass, the maneuvering derivatives and the coefficients for estimating the resistance on the hull in straight moving, the propulsive force by the propeller, steering force by the rudder, and the interaction between hull-propeller-rudder are obtained by commonly used empirical and semi-empirical formulae, or directly from published data. The MOERI KVLCC2 tanker vessel is selected as the sample ship. The free running manoeuvers in deep and shallow water at different water depths are simulated and compared with available experimental results for validation. A special simulation case of stepped bottom varying from deep water to shallow water which resembles the real situation in harbor area is also carried out. The shallow water effects on ship’s maneuverability are discussed and recommendations on steering operations in shallow water are given.

1970 ◽  
Vol 14 (04) ◽  
pp. 317-328 ◽  
Author(s):  
E. O. Tuck

The problem discussed concerns small motions of a ship, in all six degrees of freedom, but at zero speed of advance, due to an incident wave system in shallow water of depth comparable with the ship's draft. The problem is completely formulated for an arbitrary ship, and is partially solved for the case when the ship is slender and the wavelength much greater than the water depth. Sample numerical computations of heave, pitch, and sway added mass and damping coefficients and the sway exciting force are presented.


2005 ◽  
Vol 49 (02) ◽  
pp. 69-79 ◽  
Author(s):  
Ming-Chung Fang ◽  
Jhih-Hong Luo ◽  
Ming-Ling Lee

In the paper, a simplified six degrees of freedom mathematical model encompassing calm water maneuvering and traditional seakeeping theories is developed to simulate the ship turning circle test in regular waves. A coordinate system called the horizontal body axes system is used to present equations of maneuvering motion in waves. All corresponding hydrodynamic forces and coefficients for seakeeping are time varying and calculated by strip theory. For simplification, the added mass and damping coefficients are calculated using the constant draft but vary with encounter frequency. The nonlinear mathematical model developed here is successful in simulating the turning circle of a containership in sea trial conditions and can be extended to make the further simulation for the ship maneuvering under control in waves. Manuscript received at SNAME headquarters February 19, 2003; revised manuscript received January 27, 2004.


Author(s):  
Manases Tello Ruiz ◽  
Marc Mansuy ◽  
Luca Donatini ◽  
Jose Villagomez ◽  
Guillaume Delefortrie ◽  
...  

Abstract The influence of waves on ship behaviour can lead to hazardous scenarios which put at risk the ship, the crew and the surroundings. For this reason, investigating the effect of waves on manoeuvring is of relevant interest. Waves may impair the overall manoeuvring performance of ships hence increasing risks such as collisions, which are of critical importance when considering dense traffic around harbour entrances and in unsheltered access channels. These are conditions met by Ultra Large Container Ships (ULCS) when approaching a port, e.g. in the North Sea access channels to the main sea ports of Belgium. Note that due to the large draft of ULCS and the limited water depth, shallow water effects will also influenced the ship. Thus, in such scenarios the combined effects of shallow water and waves on the ship’s manoeuvring need to be studied. The present work investigates the effect of waves on the turning ability of an ULCS in shallow water. Simulations are carried out using the two time scale approach. The restricted water depth corresponds to 50% Under Keel Clearance (UKC). To gain a better insight on the forces acting on the ship, the propulsion, and the rudder behaviour in waves experimental studies were conducted. These tests were carried out in the Towing Tank for Manoeuvres in Confined Water at Flanders Hydraulics Research (in co-operation with Ghent University) with a scale model of an ULCS. Different wave lengths, wave amplitudes, ships speeds, propeller rates, and rudder angles were tested. The turning ability characteristics obtained from simulations in waves and calm water are presented, and discussed.


2007 ◽  
Vol 51 (04) ◽  
pp. 287-296 ◽  
Author(s):  
G. Delefortrie ◽  
M. Vantorre

Due to the expansion of the dimensions of container vessels, the available maneuvering space in harbor areas and their access channels is decreasing as waterway authorities are often unable to increase the channel dimensions at the same pace. The under keel clearance is an especially important parameter for ship maneuver-ability and controllability. After an overview of the shallow water effects on ship maneuvering, a new mathematical maneuvering model based on captive model tests is introduced. The mathematical model is valid in a large under keel clearance range and is applicable in four quadrants of forward speed: propeller rate combinations, drift angles, and yaw angles. The mathematical model has been validated by means of an independent set of captive model tests.


2021 ◽  
Author(s):  
Larissa Jannsen ◽  
Stefan Krüger

Abstract Due to the fast increase of the vessels’ size over the past few years the actual water depth is becoming more and more relevant for seakeeping problems. The highly frequented sea route TSS Terschelling – German Bight for example is a shallow water route for large vessels which are now affected by the reduced keel clearance. Many shallow water depth areas occur also in coastal areas or inland seas. If a vessel is travelling in shallow water sea states, the hydrodynamic forces will change compared to deep water sea states and they are essential for further seaway calculations. Furthermore, a rough but easy evaluation of the incoming seaway is the roll period. Shallow water effects should be taken into account for calculating roll periods and thereby predicting a manageable or risky seaway situation. This paper presents the implementation of shallow water effects into an existing 2D panel code. With this panel code the hydrodynamic forces for the vessel’s frames are calculated based on the potential theory in the frequency domain, which is a validated approach in the early design stage. The panel code is part of the ship design environment E4 which is being developed by the Institute of Ship Design and Ship Safety, among others. With the expanded method it is possible to calculate hydrodynamic forces also in shallow water in all degrees of freedom. Therefore, the frame motions are converted to global ship motions. Furthermore, for the usage in the early design stage the calculations should be fast but also accurate. The obtained calculation results are therefore validated with full scale measurement using Inertial-Measurement-Units.


2013 ◽  
Vol 57 (03) ◽  
pp. 125-140
Author(s):  
Daniel A. Liut ◽  
Kenneth M. Weems ◽  
Tin-Guen Yen

A quasi-three-dimensional hydrodynamic model is presented to simulate shallow water phenomena. The method is based on a finite-volume approach designed to solve shallow water equations in the time domain. The nonlinearities of the governing equations are considered. The methodology can be used to compute green water effects on a variety of platforms with six-degrees-of-freedom motions. Different boundary and initial conditions can be applied for multiple types of moving platforms, like a ship's deck, tanks, etc. Comparisons with experimental data are discussed. The shallow water model has been integrated with the Large Amplitude Motions Program to compute the effects of green water flow over decks within a time-domain simulation of ship motions in waves. Results associated to this implementation are presented.


2021 ◽  
Author(s):  
Li Zhang ◽  
Lei Xing ◽  
Mingyu Dong ◽  
Weimin Chen

Abstract Articulated pusher barge vessel is a short-distance transport vessel with good economic performance and practicability, which is widely used in the Yangtze River of China. In this present work, the resistance performance of articulated pusher barge vessel in deep water and shallow water was studied by model tests in the towing tank and basin of Shanghai Ship and Shipping Research Institute. During the experimental investigation, the articulated pusher barge vessel was divided into three parts: the pusher, the barge and the articulated pusher barge system. Firstly, the deep water resistance performance of the articulated pusher barge system, barge and the pusher at design draught T was studied, then the water depth h was adjusted, and the shallow water resistance at h/T = 2.0, 1.5 and 1.2 was tested and studied respectively, and the difference between deep water resistance and shallow water resistance at design draught were compared. The results of model tests and analysis show that: 1) in the study of deep water resistance, the total resistance of the barge was larger than that of the articulated pusher barge system. 2) for the barge, the shallow water resistance increases about 0.4–0.7 times at h/T = 2.0, 0.5–1.1 times at h/T = 1.5, and 0.7–2.3 times at h/T = 1.2. 3) for the pusher, the shallow water resistance increases about 1.0–0.4 times at h/T = 2.7, 1.2–0.9 times at h/T = 2.0, and 1.7–2.4 times at h/T = 1.6. 4) for the articulated pusher barge system, the shallow water resistance increases about 0.2–0.3 times at h/T = 2.0, 0.5–1.3 times at h/T = 1.5, and 1.0–3.5 times at h/T = 1.2. Furthermore, the water depth Froude number Frh in shallow water was compared with the changing trend of resistance in shallow water.


2011 ◽  
Vol 2 (2) ◽  
pp. 320-333
Author(s):  
F. Van den Abeele ◽  
J. Vande Voorde

The worldwide demand for energy, and in particular fossil fuels, keeps pushing the boundaries of offshoreengineering. Oil and gas majors are conducting their exploration and production activities in remotelocations and water depths exceeding 3000 meters. Such challenging conditions call for enhancedengineering techniques to cope with the risks of collapse, fatigue and pressure containment.On the other hand, offshore structures in shallow water depth (up to 100 meter) require a different anddedicated approach. Such structures are less prone to unstable collapse, but are often subjected to higherflow velocities, induced by both tides and waves. In this paper, numerical tools and utilities to study thestability of offshore structures in shallow water depth are reviewed, and three case studies are provided.First, the Coupled Eulerian Lagrangian (CEL) approach is demonstrated to combine the effects of fluid flowon the structural response of offshore structures. This approach is used to predict fluid flow aroundsubmersible platforms and jack-up rigs.Then, a Computational Fluid Dynamics (CFD) analysis is performed to calculate the turbulent Von Karmanstreet in the wake of subsea structures. At higher Reynolds numbers, this turbulent flow can give rise tovortex shedding and hence cyclic loading. Fluid structure interaction is applied to investigate the dynamicsof submarine risers, and evaluate the susceptibility of vortex induced vibrations.As a third case study, a hydrodynamic analysis is conducted to assess the combined effects of steadycurrent and oscillatory wave-induced flow on submerged structures. At the end of this paper, such ananalysis is performed to calculate drag, lift and inertia forces on partially buried subsea pipelines.


Sign in / Sign up

Export Citation Format

Share Document