Dynamic Load Analysis of the Tower Structure of a Floating Wind Turbine Under Random Wind and Wave Excitation by Detuning Blade Pitch Controller Proportional Gains

Author(s):  
Zhao Shilun

Abstract This paper carried out coupled non-linear aero-hydro-servo-elastic simulations of a semisubmersible floating wind turbine under normal and severe sea states at various wind speeds. The NREL 5MW turbine was modeled by the SIMO-RIFLEX module in SESAM with hydrodynamic gathered by the WADAM code. A taut leg mooring system with redundancy was applied to account for the relatively shallow water site in the South China Sea. By detuning KP, the proportional gain coefficient of the blade-pitch controller, the platform motions and dynamic load effects on tower structure were investigated. It was found that the reduction of KP mitigates the load effects on tower top and base connections in certain load conditions. The motion performance of the platform was improved to some extent. The generator power output, as well as the fluctuation, were analyzed. Finally, suggestion on detailed blade pitch gains tuning according to specific wind speed and sea state was given.

2019 ◽  
Vol 88 ◽  
pp. 216-240 ◽  
Author(s):  
Kun Xu ◽  
Yanlin Shao ◽  
Zhen Gao ◽  
Torgeir Moan

Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1972 ◽  
Author(s):  
Yong Ma ◽  
Aiming Zhang ◽  
Lele Yang ◽  
Chao Hu ◽  
Yue Bai

Offshore wind power has become an important trend in global renewable energy development. Based on a particle swarm optimization (PSO) algorithm and FAST program, a time-domain coupled calculation model for a floating wind turbine is established, and a combined optimization design method for the wind turbine’s blade is developed in this paper. The influence of waves on the power of the floating wind turbine is studied in this paper. The results show that, with the increase of wave height, the power fluctuation of the wind turbine increases and the average power of the wind turbine decreases. With the increase of wave period, the power oscillation amplitude of the wind turbine increases, and the power of the wind turbine at equilibrium position decreases. The optimal design of the offshore floating wind turbine blade under different wind speeds is carried out. The results show that the optimum effect of the blades is more obvious at low and mid-low wind speeds than at rated wind speeds. Considering the actual wind direction distribution in the sea area, the maximum power of the wind turbine can be increased by 3.8% after weighted optimization, and the chord length and the twist angle of the blade are reduced.


Author(s):  
Yuan Ma ◽  
Chaohe Chen ◽  
Xinkuan Yan ◽  
Yijun Shen ◽  
Tianhui Fan

Abstract The mooring system is a key component connecting a floating offshore wind turbine (FOWT) to the seabed. Generally, the traditional mooring systems mainly control the horizontal motions of the floating platform. However, due to the existence of blades, tower structure and the requirement of power generation efficiency, there is a high requirement on the pitching performance when a platform is used for the floating wind turbine. Therefore, an innovative type of mooring system which could improve the pitch performance of the FOWT is really needed. In this paper, considering the OC3-Hywind Spar floating wind turbine, based on the original type of 3 × 3 mooring system, an innovative type of mooring system which has a better control performance of the pitch of FOWT is designed. Then, the hydrodynamic responses of the floating wind turbine platform are investigated. The influence of two different mooring system types on the hydrodynamic responses of the FOWT are compared and analyzed. The conclusions of this study could serve as a reference for the mooring system design of floating wind turbine systems.


2021 ◽  
Author(s):  
Maxime Thys ◽  
Carlos Souza ◽  
Thomas Sauder ◽  
Nuno Fonseca ◽  
Petter Andreas Berthelsen ◽  
...  

Abstract Model tests were performed with a model of the INO WINDMOOR 12 MW floating wind turbine in the Ocean Basin at SINTEF Ocean. The tests were done at a scale of 1:40. RealTime Hybrid Model testing was used for the modelling of the wind turbine rotor and aerodynamic loads. A subset of the results is analysed to study the influence of the wind on the platform motions, the acceleration at tower top, the loads at base of tower and the relative wave elevation. The study is based on the comparison of the quantities of interest for different tests with the same moderate sea-state but with different wind modelling: no wind, constant thrust force, turbulent wind of 11.5 m/s and turbulent wind of 25 m/s. The wind modelling has a minimal influence on the platform surge and pitch response in the wave-frequency range. On the other hand, the aerodynamic loads, including wind turbine controller dynamics and turbulent wind, has an important impact on the low-frequency surge and pitch response. The aerodynamic loads are important for the loads at tower base due to the dominance of the tower-RNA induced gravitational loads at low-frequency. Maximum relative wave elevation was found to be mainly dependent on the thrust induced mean pitch angle.


Author(s):  
B. P. Khozyainov

The article carries out the experimental and analytical studies of three-blade wind power installation and gives the technique for measurements of angular rate of wind turbine rotation depending on the wind speeds, the rotating moment and its power. We have made the comparison of the calculation results according to the formulas offered with the indicators of the wind turbine tests executed in natural conditions. The tests were carried out at wind speeds from 0.709 m/s to 6.427 m/s. The wind power efficiency (WPE) for ideal traditional installation is known to be 0.45. According to the analytical calculations, wind power efficiency of the wind turbine with 3-bladed and 6 wind guide screens at wind speedsfrom 0.709 to 6.427 is equal to 0.317, and in the range of speed from 0.709 to 4.5 m/s – 0.351, but the experimental coefficient is much higher. The analysis of WPE variations shows that the work with the wind guide screens at insignificant average air flow velocity during the set period of time appears to be more effective, than the work without them. If the air flow velocity increases, the wind power efficiency gradually decreases. Such a good fit between experimental data and analytical calculations is confirmed by comparison of F-test design criterion with its tabular values. In the design of wind turbines, it allows determining the wind turbine power, setting the geometrical parameters and mass of all details for their efficient performance.


Author(s):  
S. G. Ignatiev ◽  
S. V. Kiseleva

Optimization of the autonomous wind-diesel plants composition and of their power for guaranteed energy supply, despite the long history of research, the diversity of approaches and methods, is an urgent problem. In this paper, a detailed analysis of the wind energy characteristics is proposed to shape an autonomous power system for a guaranteed power supply with predominance wind energy. The analysis was carried out on the basis of wind speed measurements in the south of the European part of Russia during 8 months at different heights with a discreteness of 10 minutes. As a result, we have obtained a sequence of average daily wind speeds and the sequences constructed by arbitrary variations in the distribution of average daily wind speeds in this interval. These sequences have been used to calculate energy balances in systems (wind turbines + diesel generator + consumer with constant and limited daily energy demand) and (wind turbines + diesel generator + consumer with constant and limited daily energy demand + energy storage). In order to maximize the use of wind energy, the wind turbine integrally for the period in question is assumed to produce the required amount of energy. For the generality of consideration, we have introduced the relative values of the required energy, relative energy produced by the wind turbine and the diesel generator and relative storage capacity by normalizing them to the swept area of the wind wheel. The paper shows the effect of the average wind speed over the period on the energy characteristics of the system (wind turbine + diesel generator + consumer). It was found that the wind turbine energy produced, wind turbine energy used by the consumer, fuel consumption, and fuel economy depend (close to cubic dependence) upon the specified average wind speed. It was found that, for the same system with a limited amount of required energy and high average wind speed over the period, the wind turbines with lower generator power and smaller wind wheel radius use wind energy more efficiently than the wind turbines with higher generator power and larger wind wheel radius at less average wind speed. For the system (wind turbine + diesel generator + energy storage + consumer) with increasing average speed for a given amount of energy required, which in general is covered by the energy production of wind turbines for the period, the maximum size capacity of the storage device decreases. With decreasing the energy storage capacity, the influence of the random nature of the change in wind speed decreases, and at some values of the relative capacity, it can be neglected.


Sign in / Sign up

Export Citation Format

Share Document