3-D Simulation of Iceberg Towing Operations: Cable Modeling and Frictional Contact Formulation Using Finite Element Analysis

Author(s):  
Brian J. O’Rourke ◽  
Mark K. Fuglem ◽  
Tony King

Abstract Ice management in regions of offshore development with icebergs present includes re-direction of icebergs by means of towing. The prevention of tow-rope slippage and iceberg rolling due to hydrostatic instability are essential for an effective and safe operation. The ability to simulate any particular towing operation in the field, prior to attempting it, would provide some measure of assurance of its feasibility. In addition, such a model will allow optimization of towing configuration and application by showing optimal tow direction, maximum force and rate of force application; selection of single tow line or net; and optimum net configuration. The objective of the described work is to develop a simulation tool that can be used for such application. A previous project funded by Hibernia Management and Development Company Ltd. (HMDC) gathered 3-dimensional profile data on 29 icebergs off the East coast of Canada; and further data collection has been ongoing. The present project utilizes these profiles as valuable input in the development of the model for simulating single-line and net tows. This paper presents the first phase of development of a 3-D dynamic iceberg towing model that evolved from an earlier 2-D static version. The current iteration applies the ‘Total Lagrangian’ Finite-Element Method (FEM) to model the cable-and-rope structure between the towing vessel and iceberg, and a contact model that includes sticking and sliding friction between the rope/net and iceberg. The iceberg is modeled as a rigid surface mesh and is fully constrained against motion during the current phase of development, while the cables and ropes are modeled as elastic bar elements with translational inertia and velocity-squared fluid drag. The contact elements consist of penalty springs with proportional damping, and appropriate values of these are found to be critical for numerical stability of the solution. As well, due to the large difference in stiffness values between the heavy tow cable and buoyant ropes, special attention is given to obtaining the initial tangent stiffness matrix of the cable-and-rope structure. The FE dynamic equations of motion are solved implicitly in the time domain using a combination of full and modified Newton-Raphson iteration. Simulations of contact initiation between the rope and iceberg for single-loop and net configurations are presented, as well as slipping during particular single-loop tows. Current challenges and opportunities for further development are discussed, including improving computational speed, implementing iceberg motion, adding wind and wave forces, and validating rope-ice friction characteristics through small-scale iceberg towing response in a laboratory.

2006 ◽  
Vol 34 (4) ◽  
pp. 237-255 ◽  
Author(s):  
M. Kuwajima ◽  
M. Koishi ◽  
J. Sugimura

Abstract This paper describes experimental and analytical studies of the dependence of tire friction on the surface roughness of pavement. Abrasive papers were adopted as representative of the microscopic surface roughness of pavement surfaces. The rolling∕sliding friction of tire tread rubber against these abrasive papers were measured at low slip velocities. Experimental results indicated that rolling∕sliding frictional characteristics depended on the surface roughness. In order to examine the interfacial phenomena between rubber and the abrasive papers, real contact length, partial slip, and apparent friction coefficient under vertical load and tangential force were analyzed with two-dimensional explicit finite element analysis in which slip-velocity-dependent frictional coefficients were considered. Finite element method results indicated that the sum of real contact area and local partial slip were larger for finer surfaces under the same normal and tangential forces. In addition, the velocity-dependent friction enhanced local slip, where the dependence of local slip on surface roughness was pronounced. It proved that rolling∕sliding friction at low slip ratio was affected by local frictional behavior at microslip regions at asperity contacts.


Author(s):  
R. Villavicencio ◽  
Bin Liu ◽  
Kun Liu

The paper summarises observations of the fracture response of small-scale double hull specimens subjected to quasi-static impact loads by means of simulations of the respective experiments. The collision scenarios are used to evaluate the discretisation of the finite element models, and the energy-responses given by various failure criteria commonly selected for collision assessments. Nine double hull specimens are considered in the analysis so that to discuss the advantages and disadvantages of the different failure criterion selected for the comparison. Since a large scatter is observed from the numerical results, a discussion on the reliability of finite element analysis is also provided based on the present study and other research works found in the literature.


1999 ◽  
Author(s):  
Richard B. Englund ◽  
David H. Johnson ◽  
Shannon K. Sweeney

Abstract A finite element analysis (FEA) model of the interaction of a nut and bolt was used to investigate the effects of sliding, friction, and yielding in a bolted connection. The finite element model was developed as a two-dimensional, axisymmetric system, which allowed the study of axial and radial loading and displacements. This model did not permit evaluation of hoop or torsional effects such as tightening or the helical thread form. Results presented in this paper include the distribution of load between consecutive threads, the relative sliding along thread faces, and the stress distribution and regions of yielding in the model. Finally, a comparison to previous, linear analysis work and to published experimental data is made to conclude the paper.


1996 ◽  
Vol 3 (4) ◽  
pp. 259-268 ◽  
Author(s):  
M.S. Yao

The large number of unknown variables in a finite element idealization for dynamic structural analysis is represented by a very small number of generalized variables, each associating with a generalized Ritz vector known as a basis vector. The large system of equations of motion is thereby reduced to a very small set by this transformation and computational cost of the analysis can be greatly reduced. In this article nonlinear equations of motion and their transformation are formulated in detail. A convenient way of selection of the generalized basis vector and its limitations are described. Some illustrative examples are given to demonstrate the speed and validity of the method. The method, within its limitations, may be applied to dynamic problems where the response is global in nature with finite amplitude.


Author(s):  
J T Maximov ◽  
G V Duncheva

A reliable finite element modelling (FEM) approach to the spherical motion burnishing (SMB) process is developed with a view to gaining a fundamental understanding of the process and its optimization. SMB is a patented method for mechanical surface treatment of external cylindrical faces aimed at the enhancement of the fatigue life of the metallic component as well as its roughness, micro-hardness, depth hardening, wear, and corrosion resistance. A special feature of SMB is its kinematics: the tool motion is a superposition of a spherical movement and a rectilinear translation with respect to the workpiece. In order to decrease the FEM problem size, an approximated kinematic theory for the SMB is developed. In accordance with this theory the tool motion is approximated with a series of planar movements. As a result, a plane strain SMB FEM model is developed. The initial roughness is modelled in order to to achieve a more realistic representation of the workpiece geometry. To establish the flow stress and sliding friction coefficient, a combined approach is developed which contains mechanical tests, sensitivity FEM analysis, and inverse FE analysis of the corresponding pushing process. A planned numerical experiment is carried out on the basis of the created SMB FEM model. Six regression models of the treated layer characteristics are obtained and analysed on the basis of the FEM simulations. The FEM results are evaluated and compared to the experimental ones and their validity is proved. Finally, the regression models are used as objective functions in a multi-objective optimization problem formulation of the SMB process. As a result, the optimal combination of the governing SMB parameters is established.


Author(s):  
Christoph Grossmann ◽  
Oliver Tegel

Abstract In this paper, the finite element analysis of circular wedge connections is described, and conclusions for the performance of the connection are derived. In the foreground of the examinations are stresses and deformations while tightening of the connection. Starting with the general structural performance, the influences on power transmission like slope, number of wedges, coefficient of sliding friction and outer hub diameter are discussed. An analytic function to describe the gap pressure within the tightened joint is introduced and rates to explain the problem of centering of circular wedge connections are shown. Finally two concepts for dimensioning are presented and recommendations for application of this connection are given.


Sign in / Sign up

Export Citation Format

Share Document